Zonal spherical harmonics explained

In the mathematical study of rotational symmetry, the zonal spherical harmonics are special spherical harmonics that are invariant under the rotation through a particular fixed axis. The zonal spherical functions are a broad extension of the notion of zonal spherical harmonics to allow for a more general symmetry group.

On the two-dimensional sphere, the unique zonal spherical harmonic of degree ℓ invariant under rotations fixing the north pole is represented in spherical coordinates byZ^(\theta,\phi) = \frac P_\ell(\cos\theta)where is the normalized Legendre polynomial of degree,

P\ell(1)=1

. The generic zonal spherical harmonic of degree ℓ is denoted by
(\ell)
Z
x

(y)

, where x is a point on the sphere representing the fixed axis, and y is the variable of the function. This can be obtained by rotation of the basic zonal harmonic

Z(\ell)(\theta,\phi).

In n-dimensional Euclidean space, zonal spherical harmonics are defined as follows. Let x be a point on the (n−1)-sphere. Define

(\ell)
Z
x
to be the dual representation of the linear functionalP\mapsto P(\mathbf)in the finite-dimensional Hilbert space H of spherical harmonics of degree ℓ with respect to the Haar measure on the sphere

Sn-1

with total mass

An-1

(see Unit sphere). In other words, the following reproducing property holds:Y(\mathbf) = \int_ Z^_(\mathbf)Y(\mathbf)\,d\Omega(y)for all where

\Omega

is the Haar measure from above.

Relationship with harmonic potentials

The zonal harmonics appear naturally as coefficients of the Poisson kernel for the unit ball in Rn: for x and y unit vectors,\frac\frac

^n
= \sum_^\infty r^k Z^_(\mathbf),where

\omegan-1

is the surface area of the (n-1)-dimensional sphere. They are also related to the Newton kernel via\frac
^
= \sum_^\infty c_ \frac
^k
^
Z_^(\mathbf/|\mathbf|)where and the constants are given byc_ = \frac\frac.

The coefficients of the Taylor series of the Newton kernel (with suitable normalization) are precisely the ultraspherical polynomials. Thus, the zonal spherical harmonics can be expressed as follows. If, thenZ^_(\mathbf) = \fracC_\ell^(\mathbf\cdot\mathbf)where are the constants above and

(\alpha)
C
\ell
is the ultraspherical polynomial of degree ℓ.

Properties

References