Zerovalent iron explained

Zerovalent iron (ZVI) is jargon that describes forms of iron metal that are proposed for use in groundwater remediation.[1] [2] [3] [4]

ZVI operates by electron transfer from Fe0 toward some organochlorine compounds, a common class of pollutants. The remediation process is proposed to generate Fe2+ and Cl and halide-free organic products, all of which are relatively innocuous.[5] Nanoscale ZVIs (nZVIs) are commonly used in remediation of chlorinated compounds and other pollutants.[6]

Type of ZVI

Type of contaminants treated

Many kinds of pollutants have been proposed, but few have been demonstrated in solving environmental challenges.

Further reading

Notes and References

  1. 10.1016/j.jhazmat.2013.12.062. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. 2014. Fu. Fenglian. Dionysiou. Dionysios D.. Liu. Hong. Journal of Hazardous Materials. 267. 194–205. 24457611 . 2014JHzM..267..194F .
  2. 10.1080/10408430601057611. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. 2006. Li. Xiao-qin. Elliott. Daniel W.. Zhang. Wei-Xian. Critical Reviews in Solid State and Materials Sciences. 31. 4. 111–122. 2006CRSSM..31..111L. 4834565.
  3. 10.1016/j.cej.2015.11.046. Review on nano zerovalent iron (NZVI): From synthesis to environmental applications. 2016. Stefaniuk. Magdalena. Oleszczuk. Patryk. Ok. Yong Sik. Chemical Engineering Journal. 287. 618–632. 2016ChEnJ.287..618S .
  4. Gillham, Robert, John Vogan, Lai Gui, Michael Duchene, and Jennifer Son. "Iron Barrier Walls for Chlorinated Solvent Remediation." In Situ Remediation of Chlorinated Solvent Plumes. Ed. Hans F. Stroo and C. Herb Ward. New York, NY: Springer Science+Business Media, 2010.
  5. Tratnyek, Paul, and Rick Johnson. "Remediation with Iron Metal." Center for Groundwater Research. Oregon Health and Science University, 04 Feb. 2005.
  6. Karn . Barbara . Kuiken . Todd . Otto . Martha . Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks . Environmental Health Perspectives . December 2009 . 117 . 12 . 1823-1831. 10.1289/ehp.0900793 . 20049198 . 2799454 . 2009EnvHP.117.1813K .
  7. Jafarpour, B.; Imhoff, P. T.; Chiu. P.C. 2005. Quantification and modeling of 2,4-dinitrotoluene reduction with high-purity and cast iron. Journal of Contaminant Hydrology. 76(1-2): 87-107.
  8. Kim, Y. H.; Carraway, E. R. 2003. Dechlorination of chlorinated phenols by zerovalent zinc. Environmental Technology. 24(12): 1455-1463.
  9. 10.1016/j.jhazmat.2010.11.029. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. 2011. Boparai. Hardiljeet K.. Joseph. Meera. o'Carroll. Denis M.. Journal of Hazardous Materials. 186. 1. 458–465. 21130566. 2011JHzM..186..458B .
  10. Bedner, M.; W. A. MacCrehan; G. R. Helz. 2004. Making chlorine greener: investigation of alternatives to sulfite for dechlorination. Water Research. 38(10): 2505-2514.
  11. Huang, C.; Wang, H.; Chiu, P. 1998. Nitrate reduction by metallic iron. Water Research. 32(8): 2257-2264.
  12. Choe, S.; Chang, Y.; Hwang, K.; Khim, J. 1999. Kinetics of reductive denitrification by nanoscale zerovalent iron. Chemosphere. 41(8): 1307-1311.
  13. S. A.. Mahood. P. V. L. . Schaffner\doi=10.15227/orgsyn.011.0032. 2,4-Diaminotoluene. Organic Syntheses. 1931. 11. 32. 10.15227/orgsyn.011.0032 .
  14. 10.15227/orgsyn.089.0274. O-Aminobenzaldehyde, Redox-Neutral Aminal Formation and Synthesis of Deoxyvasicinone. Organic Syntheses. 2012. 89. 274. free.
  15. Sayles, G. D.; You, G.; Wang, M.; Kupferle, M. J. 1997. DDT, DDD, and DDE dechlorination by zerovalent iron. Environmental Science & Technology. 31(12): 3448-3454.