X-ray microtomography explained
In radiography, X-ray microtomography uses X-rays to create cross-sections of a physical object that can be used to recreate a virtual model (3D model) without destroying the original object. It is similar to tomography and X-ray computed tomography. The prefix micro- (symbol: μ) is used to indicate that the pixel sizes of the cross-sections are in the micrometre range. These pixel sizes have also resulted in creation of its synonyms high-resolution X-ray tomography, micro-computed tomography (micro-CT or μCT), and similar terms. Sometimes the terms high-resolution computed tomography (HRCT) and micro-CT are differentiated, but in other cases the term high-resolution micro-CT is used. Virtually all tomography today is computed tomography.
Micro-CT has applications both in medical imaging and in industrial computed tomography. In general, there are two types of scanner setups. In one setup, the X-ray source and detector are typically stationary during the scan while the sample/animal rotates. The second setup, much more like a clinical CT scanner, is gantry based where the animal/specimen is stationary in space while the X-ray tube and detector rotate around. These scanners are typically used for small animals (in vivo scanners), biomedical samples, foods, microfossils, and other studies for which minute detail is desired.
The first X-ray microtomography system was conceived and built by Jim Elliott in the early 1980s. The first published X-ray microtomographic images were reconstructed slices of a small tropical snail, with pixel size about 50 micrometers.[1]
Working principle
Imaging system
Fan beam reconstruction
The fan-beam system is based on a one-dimensional (1D) X-ray detector and an electronic X-ray source, creating 2D cross-sections of the object. Typically used in human computed tomography systems.
Cone beam reconstruction
See also: Cone beam reconstruction. The cone-beam system is based on a 2D X-ray detector (camera) and an electronic X-ray source, creating projection images that later will be used to reconstruct the image cross-sections.
Open/Closed systems
Open X-ray system
In an open system, X-rays may escape or leak out, thus the operator must stay behind a shield, have special protective clothing, or operate the scanner from a distance or a different room. Typical examples of these scanners are the human versions, or designed for big objects.
Closed X-ray system
In a closed system, X-ray shielding is put around the scanner so the operator can put the scanner on a desk or special table. Although the scanner is shielded, care must be taken and the operator usually carries a dosimeter, since X-rays have a tendency to be absorbed by metal and then re-emitted like an antenna. Although a typical scanner will produce a relatively harmless volume of X-rays, repeated scannings in a short timeframe could pose a danger. Digital detectors with small pixel pitches and micro-focus x-ray tubes are usually employed to yield in high resolution images.[2] Closed systems tend to become very heavy because lead is used to shield the X-rays. Therefore, the smaller scanners only have a small space for samples.
3D image reconstruction
The principle
Because microtomography scanners offer isotropic, or near isotropic, resolution, display of images does not need to be restricted to the conventional axial images. Instead, it is possible for a software program to build a volume by 'stacking' the individual slices one on top of the other. The program may then display the volume in an alternative manner.[3]
Image reconstruction software
For X-ray microtomography, powerful open source software is available, such as the ASTRA toolbox.[4] [5] The ASTRA Toolbox is a MATLAB and python toolbox of high-performance GPU primitives for 2D and 3D tomography, from 2009 to 2014 developed by iMinds-Vision Lab, University of Antwerp and since 2014 jointly developed by iMinds-VisionLab, UAntwerpen and CWI, Amsterdam. The toolbox supports parallel, fan, and cone beam, with highly flexible source/detector positioning. A large number of reconstruction algorithms are available, including FBP, ART, SIRT, SART, CGLS.[6]
For 3D visualization, tomviz is a popular open-source tool for tomography.
Volume rendering
Volume rendering is a technique used to display a 2D projection of a 3D discretely sampled data set, as produced by a microtomography scanner. Usually these are acquired in a regular pattern, e.g., one slice every millimeter, and usually have a regular number of image pixels in a regular pattern. This is an example of a regular volumetric grid, with each volume element, or voxel represented by a single value that is obtained by sampling the immediate area surrounding the voxel.
Image segmentation
Where different structures have similar threshold density, it can become impossible to separate them simply by adjusting volume rendering parameters. The solution is called segmentation, a manual or automatic procedure that can remove the unwanted structures from the image.[7] [8]
Typical use
Archaeology
See also: Archaeology.
Biomedical
See also: Biomedical.
- Both in vitro and in vivo small animal imaging
- Neurons[9]
- Human skin samples
- Bone samples, including teeth,[10] ranging in size from rodents to human biopsies
- Lung imaging using respiratory gating
- Cardiovascular imaging using cardiac gating
- Imaging of the human eye, ocular microstructures and tumors[11]
- Tumor imaging (may require contrast agents)
- Soft tissue imaging[12]
- Insects[13] – Insect development[14] [15]
- Parasitology – migration of parasites,[16] parasite morphology[17] [18]
- Tablet consistency checks[19]
Developmental biology
- Tracing the development of the extinct Tasmanian tiger during growth in the pouch[20]
- Model and non-model organisms (elephants,[21] zebrafish,[22] and whales[23])
Electronics
See also: Electronics.
- Small electronic components. E.g. DRAM IC in plastic case.
Microdevices
See also: Metal foam.
- Ceramics and Ceramic–Metal composites.[24] Microstructural analysis and failure investigation
- Composite material with glass fibers 10 to 12 micrometres in diameter
See also: plastics.
Diamonds
See also: Diamond.
- Detecting defects in a diamond and finding the best way to cut it.
Food and seeds
See also: seeds.
- 3-D imaging of foods[25]
- Analysing heat and drought stress on food crops[26]
- Bubble detection in squeaky cheese[27]
Wood and paper
See also: paper.
- Piece of wood to visualize year periodicity and cell structure
Building materials
See also: Building materials.
Geology
See also: Geology. In geology it is used to analyze micro pores in the reservoir rocks,[28] [29] it can used in microfacies analysis for sequence stratigraphy. In petroleum exploration it is used to model the petroleum flow under micro pores and nano particles.
It can give a resolution up to 1 nm.
Fossils
See also: Fossils.
Microfossils
See also: Microfossils.
Palaeography
See also: Palaeography.
Space
See also: Space.
Stereo images
See also: stereoscopy.
- Visualizing with blue and green or blue filters to see depth
Others
- Cigarettes
- Social insect nests[37]
See also
External links
Notes and References
- 10.1111/j.1365-2818.1982.tb00376.x. 7086891. X-ray microtomography. 1982. Elliott JC, Dover SD. Journal of Microscopy. 126. 2. 211–213. 2231984.
- Ghani MU, Zhou Z, Ren L, Li Y, Zheng B, Yang K, Liu H . Investigation of spatial resolution characteristics of an in vivo micro computed tomography system . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment . 807 . 129–136 . January 2016 . 26640309 . 4668590 . 10.1016/j.nima.2015.11.007 . 2016NIMPA.807..129G .
- Book: Carmignato S, Dewulf W, Leach R. Industrial X-Ray Computed Tomography. 2017. Heidelberg. Springer. 978-3-319-59573-3. en.
- van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J . The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography . Ultramicroscopy . 157 . 35–47 . October 2015 . 26057688 . 10.1016/j.ultramic.2015.05.002 . 10067/1278340151162165141 . free .
- van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, De Beenhouwer J, Joost Batenburg K, Sijbers J . 6 . Fast and flexible X-ray tomography using the ASTRA toolbox . Optics Express . 24 . 22 . 25129–25147 . October 2016 . 27828452 . 10.1364/OE.24.025129 . 2016OExpr..2425129V . free . 10067/1392160151162165141 . free .
- Book: A Quasi-realtime X-ray Microtomography System at the Advanced Photon Source. 1999. United States. Department of Energy. en.
- Andrä . Heiko . Combaret . Nicolas . Dvorkin . Jack . Glatt . Erik . Han . Junehee . Kabel . Matthias . Keehm . Youngseuk . Krzikalla . Fabian . Lee . Minhui . Madonna . Claudio . Marsh . Mike . Mukerji . Tapan . Saenger . Erik H. . Sain . Ratnanabha . Saxena . Nishank . 2013-01-01 . Digital rock physics benchmarks—Part I: Imaging and segmentation . Computers & Geosciences . Benchmark problems, datasets and methodologies for the computational geosciences . 50 . 25–32 . 10.1016/j.cageo.2012.09.005 . 2013CG.....50...25A . 5722082 . 0098-3004.
- Fu J, Thomas HR, Li C . Tortuosity of porous media: Image analysis and physical simulation . Earth-Science Reviews . January 2021 . 212 . 103439 . 10.1016/j.earscirev.2020.103439. 2021ESRv..21203439F . 229386129 .
- Depannemaecker. Damien. Santos. Luiz E. Canton. de Almeida. Antonio-Carlos Guimarães. Ferreira. Gustavo B. S.. Baraldi. Giovanni L.. Miqueles. Eduardo X.. de Carvalho. Murilo. Costa. Gabriel Schubert Ruiz. Marques. Marcia J. Guimarães. Scorza. Carla A.. Rinkel. Jean. 2019-08-21. Gold Nanoparticles for X-ray Microtomography of Neurons. ACS Chemical Neuroscience. 10. 8. 3404–3408. 10.1021/acschemneuro.9b00290. 31274276. 195805317.
- Quantitative high contrast X-ray microtomography for dental research . Davis . GR . Evershed . AN . Mills . D . J. Dent. . May 2013. 41 . 5 . 475–82 . 10.1016/j.jdent.2013.01.010 . 23380275 . 3 March 2021 .
- Enders C, Braig EM, Scherer K, Werner JU, Lang GK, Lang GE, Pfeiffer F, Noël P, Rummeny E, Herzen J . 6 . Advanced Non-Destructive Ocular Visualization Methods by Improved X-Ray Imaging Techniques . PLOS ONE . 12 . 1 . e0170633 . 2017-01-27 . 28129364 . 5271321 . 10.1371/journal.pone.0170633 . 2017PLoSO..1270633E . free .
- Mizutani R, Suzuki Y . X-ray microtomography in biology . Micron . 43 . 2–3 . 104–15 . February 2012 . 22036251 . 10.1016/j.micron.2011.10.002 . 1609.02263 . 13261178 .
- van de Kamp T, Vagovič P, Baumbach T, Riedel A . A biological screw in a beetle's leg . Science . 333 . 6038 . 52 . July 2011 . 21719669 . 10.1126/science.1204245 . 2011Sci...333...52V . 8527127 .
- Lowe T, Garwood RJ, Simonsen TJ, Bradley RS, Withers PJ . Metamorphosis revealed: time-lapse three-dimensional imaging inside a living chrysalis . Journal of the Royal Society, Interface . 10 . 84 . 20130304 . July 2013 . 23676900 . 3673169 . 10.1098/rsif.2013.0304 .
- Onelli OD, Kamp TV, Skepper JN, Powell J, Rolo TD, Baumbach T, Vignolini S . Development of structural colour in leaf beetles . Scientific Reports . 7 . 1 . 1373 . May 2017 . 28465577 . 5430951 . 10.1038/s41598-017-01496-8 . 2017NatSR...7.1373O .
- Bulantová J, Macháček T, Panská L, Krejčí F, Karch J, Jährling N, Saghafi S, Dodt HU, Horák P . 6 . Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates . Micron . 83 . 62–71 . April 2016 . 26897588 . 10.1016/j.micron.2016.01.009 .
- Noever. Christoph. Keiler. Jonas. Glenner. Henrik. 2016-07-01. First 3D reconstruction of the rhizocephalan root system using MicroCT. Journal of Sea Research. Ecology and Evolution of Marine Parasites and Diseases. 113. 58–64. 10.1016/j.seares.2015.08.002. 2016JSR...113...58N. free. 1956/12721. free.
- Nagler C, Haug JT . Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae . PeerJ . 4 . e2188 . 2016-01-01 . 27441121 . 4941765 . 10.7717/peerj.2188 . free .
- Carlson CS, Hannula M, Postema M . Micro-computed tomography and brightness-mode ultrasound show air entrapments inside tablets . Current Directions in Biomedical Engineering . 2022 . 8 . 2 . 41–44 . 10.1515/cdbme-2022-1012 . 251981681 . free .
- Newton AH, Spoutil F, Prochazka J, Black JR, Medlock K, Paddle RN, Knitlova M, Hipsley CA, Pask AJ . 6 . Letting the 'cat' out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography . Royal Society Open Science . 5 . 2 . 171914 . February 2018 . 29515893 . 5830782 . 10.1098/rsos.171914 . 2018RSOS....571914N .
- Hautier L, Stansfield FJ, Allen WR, Asher RJ . Skeletal development in the African elephant and ossification timing in placental mammals . Proceedings. Biological Sciences . 279 . 1736 . 2188–95 . June 2012 . 22298853 . 3321712 . 10.1098/rspb.2011.2481 .
- Ding Y, Vanselow DJ, Yakovlev MA, Katz SR, Lin AY, Clark DP, Vargas P, Xin X, Copper JE, Canfield VA, Ang KC, Wang Y, Xiao X, De Carlo F, van Rossum DB, La Riviere P, Cheng KC . 6 . Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography . eLife . 8 . May 2019 . 31063133 . 6559789 . 10.7554/eLife.44898 . free .
- Hampe O, Franke H, Hipsley CA, Kardjilov N, Müller J . Prenatal cranial ossification of the humpback whale (Megaptera novaeangliae) . Journal of Morphology . 276 . 5 . 564–82 . May 2015 . 25728778 . 10.1002/jmor.20367 . 43353096 .
- Compressive performance and crack propagation in Al alloy/Ti2AlC composites . Materials Science and Engineering A . 2019 . 672 . 247–256. 10.1016/j.msea.2016.06.073. Hanaor. D.A.H.. Hu . L. . Kan . W.H. . Proust . G. . Foley . M. . Karaman . I. . Radovic . M. . 1908.08757 . 2019arXiv190808757H . 201645244 .
- Gerard van Dalen, Han Blonk, Henrie van Aalst, Cris Luengo Hendriks 3-D Imaging of Foods Using X-Ray Microtomography . G.I.T. Imaging & Microscopy (March 2003), pp. 18–21
- Hughes N, Askew K, Scotson CP, Williams K, Sauze C, Corke F, Doonan JH, Nibau C . 6 . Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography . Plant Methods . 13 . 1 . 76 . 2017-11-01 . 29118820 . 5664813 . 10.1186/s13007-017-0229-8 . free .
- 2023. 9. 1. 5–8. Nurkkala E, Hannula M, Carlson CS, Hyttinen J, Hopia A, Postema M. Current Directions in Biomedical Engineering. 10.1515/cdbme-2023-1002. Micro-computed tomography shows silent bubbles in squeaky mozzarella. 262087123. free.
- Munawar . Muhammad Jawad . Vega . Sandra . Lin . Chengyan . Alsuwaidi . Mohammad . Ahsan . Naveed . Bhakta . Ritesh Ramesh . 2021-01-01 . Upscaling Reservoir Rock Porosity by Fractal Dimension Using Three-Dimensional Micro-Computed Tomography and Two-Dimensional Scanning Electron Microscope Images . Journal of Energy Resources Technology . en . 143 . 1 . 10.1115/1.4047589 . 224851782 . 0195-0738.
- Sun . Huafeng . Belhaj . Hadi . Tao . Guo . Vega . Sandra . Liu . Luofu . 2019-04-01 . Rock properties evaluation for carbonate reservoir characterization with multi-scale digital rock images . Journal of Petroleum Science and Engineering . 175 . 654–664 . 10.1016/j.petrol.2018.12.075 . 2019JPSE..175..654S . 104311947 . 0920-4105.
- Andrä . Heiko . Combaret . Nicolas . Dvorkin . Jack . Glatt . Erik . Han . Junehee . Kabel . Matthias . Keehm . Youngseuk . Krzikalla . Fabian . Lee . Minhui . Madonna . Claudio . Marsh . Mike . Mukerji . Tapan . Saenger . Erik H. . Sain . Ratnanabha . Saxena . Nishank . 2013-01-01 . Digital rock physics benchmarks—part II: Computing effective properties . Computers & Geosciences . Benchmark problems, datasets and methodologies for the computational geosciences . 50 . 33–43 . 10.1016/j.cageo.2012.09.008 . 2013CG.....50...33A . 0098-3004.
- Cid . Héctor Eduardo . Carrasco-Núñez . Gerardo . Manea . Vlad Constantin . Vega . Sandra . Castaño . Victor . 2021-02-01 . The role of microporosity on the permeability of volcanic-hosted geothermal reservoirs: A case study from Los Humeros, Mexico . Geothermics . 90 . 102020 . 10.1016/j.geothermics.2020.102020 . 2021Geoth..9002020C . 230555156 . 0375-6505.
- Garwood R, Dunlop JA, Sutton MD . High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids . Biology Letters . 5 . 6 . 841–4 . December 2009 . 19656861 . 2828000 . 10.1098/rsbl.2009.0464 .
- Web site: A Letter Sealed for Centuries Has Been Read—Without Even Opening It . Castellanos . Sara . 2 March 2021 . 2 March 2021 . The Wall Street Journal .
- Unlocking history through automated virtual unfolding of sealed documents imaged by X-ray microtomography . Dambrogio . Jana . Ghassaei . Amanda . Staraza Smith . Daniel . Jackson . Holly . Demaine . Martin L.. 2 March 2021 . Nature Communications . 12 . 1 . 1184 . 10.1038/s41467-021-21326-w . 33654094 . 7925573 . 2021NatCo..12.1184D .
- Jurewicz, A. J. G. . Jones, S. M. . Tsapin, A. . Mih, D. T. . Connolly, H. C. Jr. . Graham, G. A. . 2003. Locating Stardust-like Particles in Aerogel Using X-Ray Techniques. Lunar and Planetary Science . XXXIV. 1228 . 2003LPI....34.1228J .
- Tsuchiyama A, Uesugi M, Matsushima T, Michikami T, Kadono T, Nakamura T, Uesugi K, Nakano T, Sandford SA, Noguchi R, Matsumoto T, Matsuno J, Nagano T, Imai Y, Takeuchi A, Suzuki Y, Ogami T, Katagiri J, Ebihara M, Ireland TR, Kitajima F, Nagao K, Naraoka H, Noguchi T, Okazaki R, Yurimoto H, Zolensky ME, Mukai T, Abe M, Yada T, Fujimura A, Yoshikawa M, Kawaguchi J . 6 . Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith . Science . 333 . 6046 . 1125–8 . August 2011 . 21868671 . 10.1126/science.1207807 . 2011Sci...333.1125T . 206534927 .
- Perna A, Theraulaz G . When social behaviour is moulded in clay: on growth and form of social insect nests . The Journal of Experimental Biology . 220 . Pt 1 . 83–91 . January 2017 . 28057831 . 10.1242/jeb.143347 . free .