v
V
u1,...,un\inV
ui,uj
V
\langleu,v\rangle
1
u
v
|\langleu,v\rangle| ≈ \|u\|\|v\|
Let
V
\langle ⋅ , ⋅ \rangle
\| ⋅ \|
v,u1,...,un\inV
\|v\|=1
\displaystyle\left(
n | |
\sum | |
i=1 |
|\langlev,ui\rangle|\right)2\leq
n | |
\sum | |
i,j=1 |
|\langleui,uj\rangle|.
In terms of the correlation heuristic mentioned above, if
v
u1,...,un\inV
ui
We start by noticing that for any
i\in1,...,n
\epsiloni
|\epsiloni|=1
|\langlev,ui\rangle|=\epsiloni\langlev,ui\rangle
n | |
\left(\sum | |
i=1 |
\left|\langlev,ui\rangle\right|\right)2
=\left(
n | |
\sum | |
i=1 |
\epsiloni\langlev,ui\rangle\right)2
=\left(\left\langlev,
n | |
\sum | |
i=1 |
\epsiloniui\right\rangle\right)2
\leq\|v\|2\left\|
n | |
\sum | |
i=1 |
\epsiloniui\right\|2
=\|v\|2\left\langle
n | |
\sum | |
i=1 |
\epsiloniui,
n | |
\sum | |
j=1 |
\epsiloniuj\right\rangle
=
n | |
\sum | |
i,j=1 |
\epsiloni\epsilonj\langleui,uj\rangle
v
\leq
n | |
\sum | |
i,j=1 |
|\langleui,uj\rangle|
|\epsiloni|=1
i