Vaccine resistance explained
Vaccine resistance is the evolutionary adaptation of pathogens to infect and spread through vaccinated individuals, analogous to antimicrobial resistance. It concerns both human and animal vaccines. Although the emergence of a number of vaccine resistant pathogens has been well documented, this phenomenon is nevertheless much more rare and less of a concern than antimicrobial resistance.
Vaccine resistance may be considered a special case of immune evasion, from the immunity conferred by the vaccine. Since the immunity conferred by a vaccine may be different from that induced by infection by the pathogen, the immune evasion may also be easier (in case of an inefficient vaccine) or more difficult (would be the case of the universal flu vaccine). We speak of vaccine resistance only if the immune evasion is a result of evolutionary adaptation of the pathogen (and not a feature of the pathogen that it had before any evolutionary adaptation to the vaccine) and the adaptation is driven by the selective pressure induced by the vaccine (this would not be the case of an immune evasion that is the result of genetic drift that would be present even without vaccinating the population).
Some of the causes advanced for less frequent emergence of resistance are[1] [2] that
- vaccines are mostly used for prophylaxis, that is before infection occurs, and usually act to suppress the pathogen before the host becomes infectious
- most vaccines target multiple antigenic sites of the pathogen
- different hosts may produce different immune responses to the same pathogen
For diseases that confer long lasting immunity after exposure, typically childhood diseases, it was argued that a vaccine may provide the same immune response as natural infection, so it is expected that there should be no vaccine resistance.[3] [4]
If vaccine resistance emerges the vaccine may retain some level of protection against serious infection, possibly by modifying the immune response of the host away from immunopathology.[5]
The best known cases of vaccine resistance are for the following diseases
- animal diseases
- human diseases
Other less documented cases are for avian influenza,[24] avian reovirus,[25] Corynebacterium diphtheriae,[26] feline calicivirus,[27] H. influenzae,[28] infectious bursal disease virus,[29] Neisseria meningitidis,[30] Newcastle disease virus,[31] and porcine circovirus type 2.[32]
Notes and References
- Kennedy. David A.. Read. Andrew F.. 2017-03-29. Why does drug resistance readily evolve but vaccine resistance does not?. Proceedings of the Royal Society B: Biological Sciences. en. 284. 1851. 20162562. 10.1098/rspb.2016.2562. 0962-8452. 5378080. 28356449.
- Kennedy. David A.. Read. Andrew F.. 2018-12-18. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proceedings of the National Academy of Sciences. 115. 51. 12878–12886. 10.1073/pnas.1717159115. 6304978. 30559199. 2018PNAS..11512878K . free.
- McLean. Angela Ruth. 1995-09-22. Vaccination, evolution and changes in the efficacy of vaccines: a theoretical framework. Proceedings of the Royal Society of London. Series B: Biological Sciences. 261. 1362. 389–393. 10.1098/rspb.1995.0164. 8587880. 1995RSPSB.261..389M. 24978821.
- Mclean. A. R. 1998-01-01. Vaccines and their impact on the control of disease. British Medical Bulletin. 54. 3. 545–556. 10.1093/oxfordjournals.bmb.a011709. 10326283. 0007-1420. free.
- Graham. Andrea L.. Allen. Judith E.. Read. Andrew F.. 2005-11-10. Evolutionary Causes and Consequences of Immunopathology. Annual Review of Ecology, Evolution, and Systematics. 36. 1. 373–397. 10.1146/annurev.ecolsys.36.102003.152622. 1543-592X.
- Witter. R. L.. 1997. Increased Virulence of Marek's Disease Virus Field Isolates. Avian Diseases. 41. 1. 149–163. 10.2307/1592455. 1592455. 9087332. 0005-2086.
- Read. Andrew F.. Baigent. Susan J.. Powers. Claire. Kgosana. Lydia B.. Blackwell. Luke. Smith. Lorraine P.. Kennedy. David A.. Walkden-Brown. Stephen W.. Nair. Venugopal K.. 2015-07-27. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLOS Biology. en. 13. 7. e1002198. 10.1371/journal.pbio.1002198. 1545-7885. 4516275. 26214839 . free .
- 2003-01-01. Recovery of a New Biogroup of Yersinia ruckeri from Diseased Rainbow Trout (Oncorhynchus mykiss, Walbaum). Systematic and Applied Microbiology. en. 26. 1. 127–131. 10.1078/072320203322337416. 0723-2020. Austin. D.A.. Robertson. P.A.W.. Austin. B.. 12747420.
- Independent Emergence of Yersinia ruckeri Biotype 2 in the United States and Europe. Applied and Environmental Microbiology. 2011. en. 10.1128/aem.02997-10. 3126439. 21441334. Welch. Timothy J.. Verner-Jeffreys. David W.. Dalsgaard. Inger. Wiklund. Thomas. Evenhuis. Jason P.. Garcia Cabrera. Jose A.. Hinshaw. Jeffrey M.. Drennan. John D.. Lapatra. Scott E.. 77. 10. 3493–3499. 2011ApEnM..77.3493W.
- Banet-Noach. Caroline. Simanov. Lubov. Laham-Karam. Nihay. Perk. Shimon. Bacharach. Eran. 2009. Longitudinal Survey of Avian Metapneumoviruses in Poultry in Israel: Infiltration of Field Strains into Vaccinated Flocks. Avian Diseases. 53. 2. 184–189. 10.1637/8466-090408-Reg.1. 25599093. 19630222. 21433553. 0005-2086.
- 2010-01-22. Field avian Metapneumovirus evolution avoiding vaccine induced immunity. Vaccine. en. 28. 4. 916–921. 10.1016/j.vaccine.2009.10.149. 0264-410X. Catelli. Elena. Lupini. Caterina. Cecchinato. Mattia. Ricchizzi. Enrico. Brown. Paul. Naylor. Clive J.. 19931381.
- 2010-11-20. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction. Veterinary Microbiology. en. 146. 1–2. 24–34. 10.1016/j.vetmic.2010.04.014. 0378-1135. Cecchinato. Mattia. Catelli. Elena. Lupini. Caterina. Ricchizzi. Enrico. Clubbe. Jayne. Battilani. Mara. Naylor. Clive J.. 20447777.
- Naylor. Clive J.. Ling. Roger. Edworthy. Nicole. Savage. Carol E.. Easton. Andrew J.YR 2007. Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates. Journal of General Virology. 2007. 88. 6. 1767–1775. 10.1099/vir.0.82755-0. 17485538. 1465-2099. free.
- Weinberger. Daniel M. Malley. Richard. Lipsitch. Marc. December 2011. Serotype replacement in disease after pneumococcal vaccination. The Lancet. 378. 9807. 1962–1973. 10.1016/s0140-6736(10)62225-8. 0140-6736. 3256741. 21492929.
- Brueggemann. Angela B.. Pai. Rekha. Crook. Derrick W.. Beall. Bernard. 2007-11-16. Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States. PLOS Pathogens. en. 3. 11. e168. 10.1371/journal.ppat.0030168. 1553-7374. 2077903. 18020702 . free .
- Carman. W.F.. Karayiannis. P.. Waters. J.. Thomas. H.C.. Zanetti. A.R.. Manzillo. G.. Zuckerman. A.J.. August 1990. Vaccine-induced escape mutant of hepatitis B virus. The Lancet. 336. 8711. 325–329. 10.1016/0140-6736(90)91874-a. 1697396. 45479217. 0140-6736.
- Zanetti. A.R.. Tanzi. E.. Manzillo. G.. Maio. G.. Sbreglia. C.. Caporaso. N.. Thomas. Howard. Zuckerman. ArieJ.. Hepatitis B Variant in Europe. November 1988. The Lancet. 332. 8620. 1132–1133. 10.1016/s0140-6736(88)90541-7. 2460710. 2638727. 0140-6736.
- Romanò. Luisa. Paladini. Sara. Galli. Cristina. Raimondo. Giovanni. Pollicino. Teresa. Zanetti. Alessandro R.. 2015-01-01. Hepatitis B vaccination. Human Vaccines & Immunotherapeutics. 11. 1. 53–57. 10.4161/hv.34306. 2164-5515. 4514213. 25483515.
- Sheldon. J.. Soriano. V.. 2008-02-04. Hepatitis B virus escape mutants induced by antiviral therapy. Journal of Antimicrobial Chemotherapy. 61. 4. 766–768. 10.1093/jac/dkn014. 18218641. 0305-7453. free.
- Mooi. F. R.. van Oirschot. H.. Heuvelman. K.. van der Heide. H. G.. Gaastra. W.. Willems. R. J.. February 1998. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infection and Immunity. 66. 2. 670–675. 10.1128/IAI.66.2.670-675.1998. 0019-9567. 9453625. 107955.
- Kallonen. Teemu. He. Qiushui. 2009-07-01. Bordetella pertussis strain variation and evolution postvaccination. Expert Review of Vaccines. 8. 7. 863–875. 10.1586/erv.09.46. 19538113. 22946846. 1476-0584.
- Hegerle. Nicolas. Guiso. Nicole. 2014-09-01. Bordetella pertussis and pertactin-deficient clinical isolates: lessons for pertussis vaccines. Expert Review of Vaccines. 13. 9. 1135–1146. 10.1586/14760584.2014.932254. 24953157. 21534501. 1476-0584.
- 2015-11-17. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine. en. 33. 46. 6277–6281. 10.1016/j.vaccine.2015.09.064. 0264-410X. Safarchi. Azadeh. Octavia. Sophie. Luu. Laurence Don Wai. Tay. Chin Yen. Sintchenko. Vitali. Wood. Nicholas. Marshall. Helen. McIntyre. Peter. Lan. Ruiting. 26432908.
- Effect of Vaccine Use in the Evolution of Mexican Lineage H5N2 Avian Influenza Virus. Journal of Virology. 2004. en. 10.1128/jvi.78.15.8372-8381.2004. 446090. 15254209. Lee. Chang-Won. Senne. Dennis A.. Suarez. David L.. 78. 15. 8372–8381.
- Lu. Huaguang. Tang. Yi. Dunn. Patricia A.. Wallner-Pendleton. Eva A.. Lin. Lin. Knoll. Eric A.. 2015-10-15. Isolation and molecular characterization of newly emerging avian reovirus variants and novel strains in Pennsylvania, USA, 2011–2014. Scientific Reports. en. 5. 1. 14727. 10.1038/srep14727. 2045-2322. 4606735. 26469681. 2015NatSR...514727L.
- Soubeyrand. Benoit. Plotkin. Stanley A.. June 2002. Antitoxin vaccines and pathogen virulence. Nature. en. 417. 6889. 609–610. 10.1038/417609b. 12050654. 4408258. 1476-4687.
- 2006-10-05. The challenge for the next generation of feline calicivirus vaccines. Veterinary Microbiology. en. 117. 1. 14–18. 10.1016/j.vetmic.2006.04.004. 0378-1135. Radford. Alan D.. Dawson. Susan. Coyne. Karen P.. Porter. Carol J.. Gaskell. Rosalind M.. 16698199.
- Ribeiro. Guilherme S.. Reis. Joice N.. Cordeiro. Soraia M.. Lima. Josilene B. T.. Gouveia. Edilane L.. Petersen. Maya. Salgado. Kátia. Silva. Hagamenon R.. Zanella. Rosemeire Cobo. Almeida. Samanta C. Grassi. Brandileone. Maria Cristina. January 2003. Prevention ofHaemophilus influenzaeType b (Hib) Meningitis and Emergence of Serotype Replacement with Type a Strains after Introduction of Hib Immunization in Brazil. The Journal of Infectious Diseases. 187. 1. 109–116. 10.1086/345863. 12508153. 0022-1899. free.
- Berg. Thierry P. Van Den. 2000-06-01. Acute infectious bursal disease in poultry: A review. Avian Pathology. 29. 3. 175–194. 10.1080/03079450050045431. 0307-9457. 19184804. 23178744.
- Kertesz. Daniel A.. Coulthart. Michael B.. Ryan. J. Alan. Johnson. Wendy M.. Ashton. Fraser E.. June 1998. Serogroup B, Electrophoretic Type 15 Neisseria meningitidis in Canada. The Journal of Infectious Diseases. 177. 6. 1754–1757. 10.1086/517439. 9607865. 0022-1899. free.
- Boven. Michiel van. Bouma. Annemarie. Fabri. Teun H. F.. Katsma. Elly. Hartog. Leo. Koch. Guus. 2008-02-01. Herd immunity to Newcastle disease virus in poultry by vaccination. Avian Pathology. 37. 1. 1–5. 10.1080/03079450701772391. 0307-9457. 2556191. 18202943.
- Franzo. Giovanni. Tucciarone. Claudia Maria. Cecchinato. Mattia. Drigo. Michele. 2016-12-19. Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: A large scale epidemiological study. Scientific Reports. en. 6. 1. 39458. 10.1038/srep39458. 2045-2322. 5171922. 27991573. 2016NatSR...639458F.