In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
See main article: Pythagorean trigonometric identity.
The basic relationship between the sine and cosine is given by the Pythagorean identity:
where
\sin2\theta
(\sin\theta)2
\cos2\theta
(\cos\theta)2.
This can be viewed as a version of the Pythagorean theorem, and follows from the equation
x2+y2=1
where the sign depends on the quadrant of
\theta.
Dividing this identity by
\sin2\theta
\cos2\theta
Using these identities, it is possible to express any trigonometric function in terms of any other (up to a plus or minus sign):
\sin\theta | \csc\theta | \cos\theta | \sec\theta | \tan\theta | \cot\theta | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
scope=row | \sin\theta= | \sin\theta |
| \pm\sqrt{1-\cos2\theta} |
|
|
| |||||||||||||
scope=row | \csc\theta= |
| \csc\theta |
|
|
| \pm\sqrt{1+\cot2\theta} | |||||||||||||
scope=row | \cos\theta= | \pm\sqrt{1-\sin2\theta} |
| \cos\theta |
|
|
| |||||||||||||
scope=row | \sec\theta= |
|
|
| \sec\theta | \pm\sqrt{1+\tan2\theta} |
| |||||||||||||
scope=row | \tan\theta= |
|
|
| \pm\sqrt{\sec2\theta-1} | \tan\theta |
| |||||||||||||
scope=row | \cot\theta= |
| \pm\sqrt{\csc2\theta-1} |
|
|
| \cot\theta |
By examining the unit circle, one can establish the following properties of the trigonometric functions.
When the direction of a Euclidean vector is represented by an angle
\theta,
x
x
\theta
\alpha,
\theta\prime
The values of the trigonometric functions of these angles
\theta, \theta\prime
\alpha
\theta \alpha=0 odd/even identities | \theta \alpha=
| \theta \alpha=
| \theta \alpha=
| \theta \alpha=\pi compare to \alpha=0 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\sin(-\theta)=-\sin\theta | \sin\left(\tfrac{\pi}{2}-\theta\right)=\cos\theta | \sin(\pi-\theta)=+\sin\theta | \sin\left(\tfrac{3\pi}{2}-\theta\right)=-\cos\theta | \sin(2\pi-\theta)=-\sin(\theta)=\sin(-\theta) | |||||||||
\cos(-\theta)=+\cos\theta | \cos\left(\tfrac{\pi}{2}-\theta\right)=\sin\theta | \cos(\pi-\theta)=-\cos\theta | \cos\left(\tfrac{3\pi}{2}-\theta\right)=-\sin\theta | \cos(2\pi-\theta)=+\cos(\theta)=\cos(-\theta) | |||||||||
\tan(-\theta)=-\tan\theta | \tan\left(\tfrac{\pi}{2}-\theta\right)=\cot\theta | \tan(\pi-\theta)=-\tan\theta | \tan\left(\tfrac{3\pi}{2}-\theta\right)=+\cot\theta | \tan(2\pi-\theta)=-\tan(\theta)=\tan(-\theta) | |||||||||
\csc(-\theta)=-\csc\theta | \csc\left(\tfrac{\pi}{2}-\theta\right)=\sec\theta | \csc(\pi-\theta)=+\csc\theta | \csc\left(\tfrac{3\pi}{2}-\theta\right)=-\sec\theta | \csc(2\pi-\theta)=-\csc(\theta)=\csc(-\theta) | |||||||||
\sec(-\theta)=+\sec\theta | \sec\left(\tfrac{\pi}{2}-\theta\right)=\csc\theta | \sec(\pi-\theta)=-\sec\theta | \sec\left(\tfrac{3\pi}{2}-\theta\right)=-\csc\theta | \sec(2\pi-\theta)=+\sec(\theta)=\sec(-\theta) | |||||||||
\cot(-\theta)=-\cot\theta | \cot\left(\tfrac{\pi}{2}-\theta\right)=\tan\theta | \cot(\pi-\theta)=-\cot\theta | \cot\left(\tfrac{3\pi}{2}-\theta\right)=+\tan\theta | \cot(2\pi-\theta)=-\cot(\theta)=\cot(-\theta) |
Shift by one quarter period | Shift by one half period | Shift by full periods[2] | Period | |
---|---|---|---|---|
\sin(\theta\pm\tfrac{\pi}{2})=\pm\cos\theta | \sin(\theta+\pi)=-\sin\theta | \sin(\theta+k ⋅ 2\pi)=+\sin\theta | 2\pi | |
\cos(\theta\pm\tfrac{\pi}{2})=\mp\sin\theta | \cos(\theta+\pi)=-\cos\theta | \cos(\theta+k ⋅ 2\pi)=+\cos\theta | 2\pi | |
\csc(\theta\pm\tfrac{\pi}{2})=\pm\sec\theta | \csc(\theta+\pi)=-\csc\theta | \csc(\theta+k ⋅ 2\pi)=+\csc\theta | 2\pi | |
\sec(\theta\pm\tfrac{\pi}{2})=\mp\csc\theta | \sec(\theta+\pi)=-\sec\theta | \sec(\theta+k ⋅ 2\pi)=+\sec\theta | 2\pi | |
\tan(\theta\pm\tfrac{\pi}{4})=\tfrac{\tan\theta\pm1}{1\mp\tan\theta} | \tan(\theta+\tfrac{\pi}{2})=-\cot\theta | \tan(\theta+k ⋅ \pi)=+\tan\theta | \pi | |
\cot(\theta\pm\tfrac{\pi}{4})=\tfrac{\cot\theta\mp1}{1\pm\cot\theta} | \cot(\theta+\tfrac{\pi}{2})=-\tan\theta | \cot(\theta+k ⋅ \pi)=+\cot\theta | \pi |
The sign of trigonometric functions depends on quadrant of the angle. If
{-\pi}<\theta\leq\pi
The trigonometric functions are periodic with common period
2\pi,
({-\pi},\pi],
These are also known as the (or).
The angle difference identities for
\sin(\alpha-\beta)
\cos(\alpha-\beta)
-\beta
\beta
\sin(-\beta)=-\sin(\beta)
\cos(-\beta)=\cos(\beta)
These identities are summarized in the first two rows of the following table, which also includes sum and difference identities for the other trigonometric functions.
Sine | \sin(\alpha\pm\beta) | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' | \sin\alpha\cos\beta\pm\cos\alpha\sin\beta | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cosine | \cos(\alpha\pm\beta) | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' | \cos\alpha\cos\beta\mp\sin\alpha\sin\beta | ||||||
Tangent | \tan(\alpha\pm\beta) | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' |
| ||||||
Cosecant | \csc(\alpha\pm\beta) | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' |
| ||||||
Secant | \sec(\alpha\pm\beta) | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' |
| ||||||
Cotangent | \cot(\alpha\pm\beta) | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' |
| ||||||
Arcsine | \arcsinx\pm\arcsiny | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' | \arcsin\left(x\sqrt{1-y2}\pmy\sqrt{1-x2\vphantom{y}}\right) | ||||||
Arccosine | \arccosx\pm\arccosy | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' | \arccos\left(xy\mp\sqrt{\left(1-x2\right)\left(1-y2\right)}\right) | ||||||
Arctangent | \arctanx\pm\arctany | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' |
\right) | ||||||
Arccotangent | \arccotx\pm\arccoty | style='border-style: solid none solid none; text-align: center;' | = | style='border-style: solid solid solid none; text-align: left;' |
\right) |
When the series converges absolutely then
Because the series converges absolutely, it is necessarily the case that and In particular, in these two identities an asymmetry appears that is not seen in the case of sums of finitely many angles: in each product, there are only finitely many sine factors but there are cofinitely many cosine factors. Terms with infinitely many sine factors would necessarily be equal to zero.
When only finitely many of the angles
\thetai
Let
ek
k=0,1,2,3,\ldots
i=0,1,2,3,\ldots,
Then
\Bigl(\sum_i \theta_i\Bigr)&= \frac\end
using the sine and cosine sum formulae above.
The number of terms on the right side depends on the number of terms on the left side.
For example:
and so on. The case of only finitely many terms can be proved by mathematical induction.[11] The case of infinitely many terms can be proved by using some elementary inequalities.[12]
where
ek
xi=\tan\thetai,
i=1,\ldots,n,
For example,
See main article: Ptolemy's theorem.
Ptolemy's theorem is important in the history of trigonometric identities, as it is how results equivalent to the sum and difference formulas for sine and cosine were first proved. It states that in a cyclic quadrilateral
ABCD
By Thales's theorem,
\angleDAB
\angleDCB
DAB
DCB
\overline{BD}
\overline{AB}=\sin\alpha
\overline{AD}=\cos\alpha
\overline{BC}=\sin\beta
\overline{CD}=\cos\beta
By the inscribed angle theorem, the central angle subtended by the chord
\overline{AC}
\angleADC
2(\alpha+\beta)
\alpha+\beta
\overline{AC}
\sin(\alpha+\beta)
\sin(\alpha+\beta)
When these values are substituted into the statement of Ptolemy's theorem that
|\overline{AC}| ⋅ |\overline{BD}|=|\overline{AB}| ⋅ |\overline{CD}|+|\overline{AD}| ⋅ |\overline{BC}|
\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta
\sin(\alpha-\beta)
\overline{CD}
\overline{BD}
is the th Chebyshev polynomial | \cos(n\theta)=Tn(\cos\theta) | |
---|---|---|
de Moivre's formula, is the imaginary unit | \cos(n\theta)+i\sin(n\theta)=(\cos\theta+i\sin\theta)n |
Formulae for twice an angle.
\sin(2\theta)=2\sin\theta\cos\theta=(\sin\theta+\cos\theta)2-1=
2\tan\theta | |
1+\tan2\theta |
\cos(2\theta)=\cos2\theta-\sin2\theta=2\cos2\theta-1=1-2\sin2\theta=
1-\tan2\theta | |
1+\tan2\theta |
\tan(2\theta)=
2\tan\theta | |
1-\tan2\theta |
\cot(2\theta)=
\cot2\theta-1 | |
2\cot\theta |
=
1-\tan2\theta | |
2\tan\theta |
\sec(2\theta)=
\sec2\theta | |
2-\sec2\theta |
=
1+\tan2\theta | |
1-\tan2\theta |
\csc(2\theta)=
\sec\theta\csc\theta | |
2 |
=
1+\tan2\theta | |
2\tan\theta |
Formulae for triple angles.
\sin(3\theta)=3\sin\theta-4\sin3\theta=4\sin\theta\sin\left(
\pi | -\theta\right)\sin\left( | |
3 |
\pi | |
3 |
+\theta\right)
\cos(3\theta)=4\cos3\theta-3\cos\theta=4\cos\theta\cos\left(
\pi | -\theta\right)\cos\left( | |
3 |
\pi | |
3 |
+\theta\right)
\tan(3\theta)=
3\tan\theta-\tan3\theta | |
1-3\tan2\theta |
=\tan\theta\tan\left(
\pi | |
3 |
-\theta\right)\tan\left(
\pi | |
3 |
+\theta\right)
\cot(3\theta)=
3\cot\theta-\cot3\theta | |
1-3\cot2\theta |
\sec(3\theta)=
\sec3\theta | |
4-3\sec2\theta |
\csc(3\theta)=
\csc3\theta | |
3\csc2\theta-4 |
Formulae for multiple angles.[16]
\begin{align} \sin(n\theta)&=\sumkodd
| ||||
(-1) |
{n\choosek}\cosn-k\theta\sink\theta=
(n+1)/2 | |
\sin\theta\sum | |
i=0 |
i | |
\sum | |
j=0 |
(-1)i-j{n\choose2i+1}{i\choosej} \cosn-2(i-j)-1\theta\\
| |||||
{}&=\sin(\theta) ⋅ \sum | |||||
k=0 |
(-1)k ⋅ {(2 ⋅ \cos(\theta))}n-2k-1 ⋅ {n-k-1\choosek}\\ {}&=2(n-1)
n-1 | |
\prod | |
k=0 |
\sin(k\pi/n+\theta) \end{align}
\begin{align}\cos(n\theta)&=\sumkeven
| ||||
(-1) |
{n\choosek}\cosn-k\theta\sink\theta=
n/2 | |
\sum | |
i=0 |
i | |
\sum | |
j=0 |
(-1)i-j{n\choose2i}{i\choosej}\cosn-2(i-j)\theta\\ {}&=
| |||||
\sum | |||||
k=0 |
(-1)k ⋅ {(2 ⋅ \cos(\theta))}n-2k ⋅ {n-k\choosek} ⋅
n | |
2n-2k |
\end{align}
\cos((2n+1)\theta)=(-1)n22n
2n | |
\prod | |
k=0 |
\cos(k\pi/(2n+1)-\theta)
\cos(2n\theta)=(-1)n22n-1
2n-1 | |
\prod | |
k=0 |
\cos((1+2k)\pi/(4n)-\theta)
\tan(n\theta)=
| ||||||||||||||
\tan |
k\theta}{\sumkeven
| ||||
(-1) |
{n\choosek}\tank\theta}
The Chebyshev method is a recursive algorithm for finding the th multiple angle formula knowing the
(n-1)
(n-2)
\cos(nx)
\cos((n-1)x)
\cos((n-2)x)
\cos(x)
This can be proved by adding together the formulae
It follows by induction that
\cos(nx)
\cosx,
Similarly,
\sin(nx)
\sin((n-1)x),
\sin((n-2)x),
\cosx
\sin((n-1)x+x)
\sin((n-1)x-x).
Serving a purpose similar to that of the Chebyshev method, for the tangent we can write:
\cos \frac &= \sgn\left(\cos\frac\theta2\right) \sqrt \\[3pt]
\tan \frac&= \frac= \frac= \csc \theta - \cot \theta= \frac \\[6mu]
&= \sgn(\sin \theta) \sqrt\frac= \frac \\[3pt]
\cot \frac&= \frac= \frac= \csc \theta + \cot \theta= \sgn(\sin \theta) \sqrt\frac \\
\sec \frac&= \sgn\left(\cos\frac\theta2\right) \sqrt \\
\csc \frac&= \sgn\left(\sin\frac\theta2\right) \sqrt \\
\end
Also
See also: Tangent half-angle formula. These can be shown by using either the sum and difference identities or the multiple-angle formulae.
Sine | Cosine | Tangent | Cotangent | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Double-angle formula[18] | \begin{align} \sin(2\theta)&=2\sin\theta\cos\theta \\ &=
\end{align} | \begin{align} \cos(2\theta)&=\cos2\theta-\sin2\theta\\ &=2\cos2\theta-1\ &=1-2\sin2\theta\\ &=
\end{align} | \tan(2\theta)=
| \cot(2\theta)=
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triple-angle formula[19] | \begin{align} \sin(3\theta)&=-\sin3\theta+3\cos2\theta\sin\theta\\ &=-4\sin3\theta+3\sin\theta \end{align} | \begin{align} \cos(3\theta)&=\cos3\theta-3\sin2\theta\cos\theta\\ &=4\cos3\theta-3\cos\theta \end{align} | \tan(3\theta)=
| \cot(3\theta)=
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Half-angle formula | \begin{align} &\sin
=sgn\left(\sin
| \begin{align} &\cos
=sgn\left(\cos
| \begin{align} \tan
&=\csc\theta-\cot\theta\\ &=\pm\sqrt
\\[3pt] &=
\\[3pt] &=
\\[5pt] \tan
&=
\\[5pt] \tan\left(
+
\right)&=\sec\theta+\tan\theta\\[5pt] \sqrt{
| \begin{align} \cot
&=\csc\theta+\cot\theta\\ &=\pm\sqrt
\\[3pt] &=
\\[4pt] &=
\end{align} |
The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation, which allows one to prove that trisection is in general impossible using the given tools.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation, where
x
Obtained by solving the second and third versions of the cosine double-angle formula.
Sine | Cosine | Other | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\sin2\theta=
| \cos2\theta=
| \sin2\theta\cos2\theta=
| ||||||||||
\sin3\theta=
| \cos3\theta=
| \sin3\theta\cos3\theta=
| ||||||||||
\sin4\theta=
| \cos4\theta=
| \sin4\theta\cos4\theta=
| ||||||||||
\sin5\theta=
| \cos5\theta=
| \sin5\theta\cos5\theta=
|
In general terms of powers of
\sin\theta
\cos\theta
if n is ... | \cosn\theta | \sinn\theta | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n is odd | \cosn\theta=
\binom{n}{k}\cos{((n-2k)\theta)} | \sinn\theta=
\binom{n}{k}\sin{((n-2k)\theta)} | ||||||||||||||||||||||||||||||||
n is even | \cosn\theta=
| \sinn\theta=
|
The product-to-sum identities[20] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems. Historically, the first four of these were known as Werner's formulas, after Johannes Werner who used them for astronomical calculations.[21] See amplitude modulation for an application of the product-to-sum formulae, and beat (acoustics) and phase detector for applications of the sum-to-product formulae.
\begin{align} \cos\theta\cos\varphi&=\tfrac12l(~\cos(\theta-\varphi)+\cos(\theta+\varphi)r)\\[3mu] \sin\theta\sin\varphi&=\tfrac12l(~\cos(\theta-\varphi)-\cos(\theta+\varphi)r)\\[3mu] \sin\theta\cos\varphi&=\tfrac12l(~\sin(\theta+\varphi)+\sin(\theta-\varphi)r)\\[3mu] \cos\theta\sin\varphi&=\tfrac12l(~\sin(\theta+\varphi)-\sin(\theta-\varphi)r) \end{align}
\tan\theta\tan\varphi=
\cos(\theta-\varphi)-\cos(\theta+\varphi) | |
\cos(\theta-\varphi)+\cos(\theta+\varphi) |
\tan\theta\cot\varphi=
\sin(\theta+\varphi)+\sin(\theta-\varphi) | |
\sin(\theta+\varphi)-\sin(\theta-\varphi) |
\begin{align}
n | |
\prod | |
k=1 |
\cos\thetak&=
1 | |
2n |
\sume\in\cos(e1\theta1+ … +en\thetan)\\[6pt] &wheree=(e1,\ldots,en)\inS=\{1,-1\}n \end{align}
n | |
\prod | |
k=1 |
\sin\theta | ||||||||||||
|
\begin{cases} \displaystyle\sume\in\cos(e1\theta1+ … +en\thetan)\prod
n | |
j=1 |
ej if n iseven,\\ \displaystyle\sume\in\sin(e1\theta1+ … +en\thetan)\prod
n | |
j=1 |
ej if n isodd \end{cases}
The sum-to-product identities are as follows:[22]
\sin\theta\pm\sin\varphi=2\sin\left(
\theta\pm\varphi | |
2 |
\right)\cos\left(
\theta\mp\varphi | |
2 |
\right)
\cos\theta+\cos\varphi=2\cos\left(
\theta+\varphi | |
2 |
\right)\cos\left(
\theta-\varphi | |
2 |
\right)
\cos\theta-\cos\varphi=-2\sin\left(
\theta+\varphi | |
2 |
\right)\sin\left(
\theta-\varphi | |
2 |
\right)
\tan\theta\pm\tan\varphi= | \sin(\theta\pm\varphi) |
\cos\theta\cos\varphi |
See main article: Hermite's cotangent identity.
Charles Hermite demonstrated the following identity.[23] Suppose
a1,\ldots,an
(in particular,
A1,1,
The simplest non-trivial example is the case :
For coprime integers,
where is the Chebyshev polynomial.
The following relationship holds for the sine function
More generally for an integer [24]
or written in terms of the chord function ,
This comes from the factorization of the polynomial into linear factors (cf. root of unity): For any complex and an integer,
For some purposes it is important to know that any linear combination of sine waves of the same period or frequency but different phase shifts is also a sine wave with the same period or frequency, but a different phase shift. This is useful in sinusoid data fitting, because the measured or observed data are linearly related to the and unknowns of the in-phase and quadrature components basis below, resulting in a simpler Jacobian, compared to that of
c
\varphi
The linear combination, or harmonic addition, of sine and cosine waves is equivalent to a single sine wave with a phase shift and scaled amplitude,[25]
where
c
\varphi
given that
a ≠ 0.
More generally, for arbitrary phase shifts, we have
where
c
\varphi
The general case readswhereand
These identities, named after Joseph Louis Lagrange, are:[26] [27] [28] for
\theta\not\equiv0\pmod{2\pi}.
A related function is the Dirichlet kernel:
A similar identity is[29]
The proof is the following. By using the angle sum and difference identities,Then let's examine the following formula,
and this formula can be written by using the above identity,
So, dividing this formula with
2\sin\alpha
If
f(x)
More tersely stated, if for all
\alpha
f\alpha
f
If
x
f(x)
-\alpha.
See main article: Euler's formula.
Euler's formula states that, for any real number x:[30] where i is the imaginary unit. Substituting −x for x gives us:
These two equations can be used to solve for cosine and sine in terms of the exponential function. Specifically,[31] [32]
These formulae are useful for proving many other trigonometric identities. For example, that means thatThat the real part of the left hand side equals the real part of the right hand side is an angle addition formula for cosine. The equality of the imaginary parts gives an angle addition formula for sine.
The following table expresses the trigonometric functions and their inverses in terms of the exponential function and the complex logarithm.
Function | Inverse function[33] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
\sin\theta=
| \arcsinx=-iln\left(ix+\sqrt{1-x2}\right) | |||||||||
\cos\theta=
| \arccosx=-iln\left(x+\sqrt{x2-1}\right) | |||||||||
\tan\theta=-i
| \arctanx=
ln\left(
\right) | |||||||||
\csc\theta=
| \arccscx=-iln\left(
+\sqrt{1-
| |||||||||
\sec\theta=
| \arcsecx=-iln\left(
+i\sqrt{1-
| |||||||||
\cot\theta=i
| \arccotx=
ln\left(
\right) | |||||||||
\operatorname{cis}\theta=ei\theta | \operatorname{arccis}x=-ilnx |
Trigonometric functions may be deduced from hyperbolic functions with complex arguments. The formulae for the relations are shown below[34] [35] .
When using a power series expansion to define trigonometric functions, the following identities are obtained:[36]
For applications to special functions, the following infinite product formulae for trigonometric functions are useful:[37] [38]
See main article: Inverse trigonometric functions.
The following identities give the result of composing a trigonometric function with an inverse trigonometric function.
Taking the multiplicative inverse of both sides of the each equation above results in the equations for
\csc=
1 | |
\sin |
, \sec=
1 | |
\cos |
,and\cot=
1 | |
\tan |
.
\cot(\arcsinx)
\csc(\arccosx)
\sec(\arccosx)
The following identities are implied by the reflection identities. They hold whenever
x,r,s,-x,-r,and-s
Also,[39]
The arctangent function can be expanded as a series:
In terms of the arctangent function we have
The curious identity known as Morrie's law,
is a special case of an identity that contains one variable:
Similarly,is a special case of an identity with
x=20\circ
For the case
x=15\circ
For the case
x=10\circ
The same cosine identity is
Similarly,
Similarly,
The following is perhaps not as readily generalized to an identity containing variables (but see explanation below):
Degree measure ceases to be more felicitous than radian measure when we consider this identity with 21 in the denominators:
The factors 1, 2, 4, 5, 8, 10 may start to make the pattern clear: they are those integers less than that are relatively prime to (or have no prime factors in common with) 21. The last several examples are corollaries of a basic fact about the irreducible cyclotomic polynomials: the cosines are the real parts of the zeroes of those polynomials; the sum of the zeroes is the Möbius function evaluated at (in the very last case above) 21; only half of the zeroes are present above. The two identities preceding this last one arise in the same fashion with 21 replaced by 10 and 15, respectively.
Other cosine identities include:[40] and so forth for all odd numbers, and hence
Many of those curious identities stem from more general facts like the following:and
Combining these gives us
If is an odd number (
n=2m+1
The transfer function of the Butterworth low pass filter can be expressed in terms of polynomial and poles. By setting the frequency as the cutoff frequency, the following identity can be proved:
An efficient way to compute to a large number of digits is based on the following identity without variables, due to Machin. This is known as a Machin-like formula:or, alternatively, by using an identity of Leonhard Euler:or by using Pythagorean triples:
Others include:[41]
Generally, for numbers for which, let . This last expression can be computed directly using the formula for the cotangent of a sum of angles whose tangents are and its value will be in . In particular, the computed will be rational whenever all the values are rational. With these values,
where in all but the first expression, we have used tangent half-angle formulae. The first two formulae work even if one or more of the values is not within . Note that if is rational, then the values in the above formulae are proportional to the Pythagorean triple .
For example, for terms,for any .
Euclid showed in Book XIII, Proposition 10 of his Elements that the area of the square on the side of a regular pentagon inscribed in a circle is equal to the sum of the areas of the squares on the sides of the regular hexagon and the regular decagon inscribed in the same circle. In the language of modern trigonometry, this says:
Ptolemy used this proposition to compute some angles in his table of chords in Book I, chapter 11 of Almagest.
These identities involve a trigonometric function of a trigonometric function:[42]
\cos(t\sinx)=J0(t)+2
infty | |
\sum | |
k=1 |
J2k(t)\cos(2kx)
\sin(t\sinx)=2
infty | |
\sum | |
k=0 |
J2k+1(t)\sin((2k+1)x)
\cos(t\cosx)=J0(t)+2
infty | |
\sum | |
k=1 |
kJ | |
(-1) | |
2k |
(t)\cos(2kx)
\sin(t\cosx)=2
infty(-1) | |
\sum | |
k=0 |
kJ2k+1(t)\cos((2k+1)x)
where are Bessel functions.
A conditional trigonometric identity is a trigonometric identity that holds if specified conditions on the arguments to the trigonometric functions are satisfied.[43] The following formulae apply to arbitrary plane triangles and follow from
\alpha+\beta+\gamma=180\circ,
See main article: Versine and Exsecant. The versine, coversine, haversine, and exsecant were used in navigation. For example, the haversine formula was used to calculate the distance between two points on a sphere. They are rarely used today.
See main article: Dirichlet kernel. The Dirichlet kernel is the function occurring on both sides of the next identity:
The convolution of any integrable function of period
2\pi
n
See main article: Tangent half-angle substitution.
If we set then[44] where
ei=\cosx+i\sinx,
When this substitution of
t
\sinx
\cosx
\sinx
\cosx
t
See also: Viète's formula and Sinc function.