Spin squeezing explained
Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states.[1] Such states have been proposed for quantum metrology, to allow a better precision for estimating a rotation angle than classical interferometers.[2] However a wide body of work contradicts this analysis.[3] [4] [5] In particular, these works show that the estimation precision obtainable for any quantum state
can be expressed solely in terms of the state response to the signal. As squeezing does not increase the state response to the signal, it cannot fundamentally improve the measurement precision.
Mathematical definition
Spin squeezed states for an ensemble of spins have been defined analogously to squeezed states of a bosonic mode.[6] For any quantum state (not necessarily a pure state), let
be the direction of its mean spin, so that
\langleJx\rangle=\langleJy\rangle=0
. By the
Heisenberg uncertainty relation,
where
are the collective angular momentum components defined as
and
are the single particle angular momentum components.
We say that the state is spin-squeezed in the
-direction, if the variance of the
-component is smaller than the square root of the right-hand side of the inequality above
A different definition was based on using states with a reduced spin-variance for metrology.
[7] Relations to quantum entanglement
Spin squeezed states can be proven to be entangled based on measuring the spin length and the variance of the spin in an orthogonal direction.[8] Let us define the spin squeezing parameter
,
where
is the number of the spin-
particles in the ensemble. Then, if
is smaller than
then the state is entangled. It has also been shown that a higher and higher level of multipartite entanglement is needed to achieve a larger and larger degree of spin squeezing.
[9] Experiments with atomic ensembles
Experiments have been carried out with cold or even room temperature atomic ensembles.[10] [11] In this case, the atoms do not interact with each other. Hence, in order to entangle them, they make them interact with light which is then measured. A 20 dB (100 times) spin squeezing has been obtained in such a system.[12] Simultaneous spin squeezing of two ensembles, which interact with the same light field, has been used to entangle the two ensembles.[13] Spin squeezing can be enhanced by using cavities.[14]
Cold gas experiments have also been carried out with Bose-Einstein Condensates (BEC).[15] [16] [17] In this case, the spin squeezing is due to the interaction between the atoms.
Most experiments have been carried out using only two internal states of the particles, hence, effectively with spin-
particles. There are also experiments aiming at spin squeezing with particles of a higher spin.
[18] [19] Nuclear-electron spin squeezing within the atoms, rather than interatomic spin squeezing, has also been created in room temperature gases.
[20] Creating large spin squeezing
Experiments with atomic ensembles are usually implemented in free-space with Gaussian laser beams. To enhance the spin squeezing effect towards generating non-Gaussian states,[21] which are metrologically useful, the free-space apparatuses are not enough. Cavities and nanophotonic waveguides have been used to enhance the squeezing effect with less atoms.[22] For the waveguide systems, the atom-light coupling and the squeezing effect can be enhanced using the evanescent field near to the waveguides, and the type of atom-light interaction can be controlled by choosing a proper polarization state of the guided input light, the internal state subspace of the atoms and the geometry of the trapping shape. Spin squeezing protocols using nanophotonic waveguides based on the birefringence effect[23] and the Faraday effect[24] have been proposed. By optimizing the optical depth or cooperativity through controlling the geometric factors mentioned above, the Faraday protocol demonstrates that, to enhance the squeezing effect, one needs to find a geometry that generates weaker local electric field at the atom positions.[24] This is counterintuitive, because usually to enhance atom-light coupling, a strong local field is required. But it opens the door to perform very precise measurement with little disruptions to the quantum system, which cannot be simultaneously satisfied with a strong field.
Generalized spin squeezing
In entanglement theory, generalized spin squeezing also refers to any criterion that is given with the first and second moments of angular momentum coordinates, and detects entanglement in a quantum state. For a large ensemble of spin-1/2 particles a complete set of such relations have been found,[25] which have been generalized to particles with an arbitrary spin.[26] Apart from detecting entanglement in general, there are relations that detect multipartite entanglement.[27] Some of the generalized spin-squeezing entanglement criteria have also a relation to quantum metrological tasks. For instance, planar squeezed states can be used to measure an unknown rotation angle optimally.[28]
References
- 2011-12-01. Quantum spin squeezing. Physics Reports. 509. 2–3. 89–165. 10.1016/j.physrep.2011.08.003. 0370-1573. 1011.2978. 2011PhR...509...89M. Ma. Jian. Wang. Xiaoguang. Sun. C.P.. Nori. Franco. 119239234 .
- Gross. Christian. 2018-03-16. Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics. en. 45. 10. 103001. 2012-05-14. 10.1088/0953-4075/45/10/103001. 0953-4075. 1203.5359. 2012JPhB...45j3001G. 118503993 .
- 2006. Quantum Metrology. Physical Review Letters. 96. 010401. 10.1103/PhysRevLett.96.010401. Giovannetti. Vittorio. Lloyd. Seth. Maccone. Lorenzo. quant-ph/0509179.
- 2012. Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Physical Review A. 85. 042112. 10.1103/PhysRevA.85.042112. Zwierz. Marcin. Pérez-Delgado. Carlos. Kok. Pieter. 1201.2225.
- 2007. Generalized limits for single-parameter quantum estimation. Physical Review Letters. 98. 090401. 10.1103/PhysRevLett.98.090401. Boixo. S..
- Kitagawa. Masahiro. Ueda. Masahito. 1993-06-01. Squeezed spin states. Physical Review A. 47. 6. 5138–5143. 10.1103/PhysRevA.47.5138. 1993PhRvA..47.5138K. 9909547. 11094/77656. free.
- Wineland. D. J.. Bollinger. J. J.. Itano. W. M.. Moore. F. L.. Heinzen. D. J.. 1992-12-01. Spin squeezing and reduced quantum noise in spectroscopy. Physical Review A. 46. 11. R6797–R6800. 10.1103/PhysRevA.46.R6797. 1992PhRvA..46.6797W. 9908086.
- Sørensen. A.. Duan. L.-M.. Cirac. J. I.. Zoller. P.. 2001-01-04 . Many-particle entanglement with Bose–Einstein condensates. Nature. En. 409. 6816. 63–66. 10.1038/35051038. 11343111. 1476-4687. quant-ph/0006111. 2001Natur.409...63S. 4427235 .
- Sørensen. Anders S.. Mølmer. Klaus. 2001-05-14. Entanglement and Extreme Spin Squeezing. Physical Review Letters. 86. 20. 4431–4434. 10.1103/PhysRevLett.86.4431. 11384252. quant-ph/0011035. 2001PhRvL..86.4431S. 206327094 .
- Hald. J.. Sørensen. J. L.. Schori. C.. Polzik. E. S.. 1999-08-16. Spin Squeezed Atoms: A Macroscopic Entangled Ensemble Created by Light. Physical Review Letters. 83. 7. 1319–1322. 10.1103/PhysRevLett.83.1319. 1999PhRvL..83.1319H.
- Sewell. R. J.. Koschorreck. M.. Napolitano. M.. Dubost. B.. Behbood. N.. Mitchell. M. W.. 2012-12-19. Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing. Physical Review Letters. 109. 25. 253605. 10.1103/PhysRevLett.109.253605. 23368463. 1111.6969. 2012PhRvL.109y3605S. 45099611 .
- Hosten. Onur. Engelsen. Nils J.. Krishnakumar. Rajiv. Kasevich. Mark A.. 2016-01-28. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature. En. 529. 7587. 505–508. 10.1038/nature16176. 1476-4687. 2016Natur.529..505H. 26751056. 2139293 .
- Julsgaard. Brian. Kozhekin. Alexander. Polzik. Eugene S.. 2001-01-27. Experimental long-lived entanglement of two macroscopic objects. Nature. En. 413. 6854. 400–403. 10.1038/35096524. 11574882. 1476-4687. quant-ph/0106057. 2001Natur.413..400J. 4343736 .
- Leroux. Ian D.. Schleier-Smith. Monika H.. Vuletić. Vladan. 2010-02-17. Implementation of Cavity Squeezing of a Collective Atomic Spin. Physical Review Letters. 104. 7. 073602. 10.1103/PhysRevLett.104.073602. 20366881. 0911.4065. 2010PhRvL.104g3602L. 290082 .
- Estève. J.. Gross. C.. Weller. A.. Giovanazzi. S.. Oberthaler. M. K.. 2008-10-30. Squeezing and entanglement in a Bose–Einstein condensate. Nature. En. 455. 7217. 1216–1219. 10.1038/nature07332. 18830245. 1476-4687. 0810.0600. 2008Natur.455.1216E. 1424462 .
- Muessel. W.. Strobel. H.. Linnemann. D.. Hume. D. B.. Oberthaler. M. K.. 2014-09-05. Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates. Physical Review Letters. 113. 10. 103004. 10.1103/PhysRevLett.113.103004. 25238356. 1405.6022. 2014PhRvL.113j3004M. 1726295.
- Riedel. Max F.. Böhi. Pascal. Li. Yun. Hänsch. Theodor W.. Sinatra. Alice. Treutlein. Philipp. 2010-04-22. Atom-chip-based generation of entanglement for quantum metrology. Nature. En. 464. 7292. 1170–1173. 10.1038/nature08988. 20357765. 1476-4687. 1003.1651. 2010Natur.464.1170R. 4302730 .
- Hamley. C. D.. Gerving. C. S.. Hoang. T. M.. Bookjans. E. M.. Chapman. M. S.. 2012-02-26. Spin-nematic squeezed vacuum in a quantum gas. Nature Physics. En. 8. 4. 305–308. 10.1038/nphys2245. 1745-2481. 1111.1694. 2012NatPh...8..305H. 56260302 .
- Behbood. N.. Martin Ciurana. F.. Colangelo. G.. Napolitano. M.. Tóth. Géza. Sewell. R. J.. Mitchell. M. W.. 2014-08-25. Generation of Macroscopic Singlet States in a Cold Atomic Ensemble. Physical Review Letters. 113. 9. 093601. 10.1103/PhysRevLett.113.093601. 25215981. 1403.1964. 2014PhRvL.113i3601B. 25825285 .
- Fernholz. T.. Krauter. H.. Jensen. K.. Sherson. J. F.. Sørensen. A. S.. Polzik. E. S.. 2008-08-12. Spin Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement. Physical Review Letters. 101. 7. 073601. 10.1103/PhysRevLett.101.073601. 18764532. 0802.2876. 2008PhRvL.101g3601F. 14858927 .
- Adesso. Gerardo. Ragy. Sammy. Lee. Antony R.. 2014-03-12. Continuous Variable Quantum Information: Gaussian States and Beyond. Open Systems & Information Dynamics. 21. 1n02. 1440001. 1401.4679. 10.1142/S1230161214400010. 1230-1612. 2014arXiv1401.4679A. 15318256.
- Cavity-aided nondemolition measurements for atom counting and spin squeezing . 10.1103/PhysRevA.89.043837 . Physical Review A . 2014 . Zilong . Chen . J. G. . Bohnet . J. M. . Weiner . K. C. . Cox . J. K. . Thompson . 89 . 4 . 043837 . 1211.0723 . 2014PhRvA..89d3837C . 119251855 .
- Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing . 10.1103/PhysRevA.93.023817 . Physical Review A . 2016 . Xiaodong . Qi . Ben Q. . Baragiola . Poul S. . Jessen . Ivan H. . Deutsch . 93 . 2 . 023817 . 1509.02625 . 2016PhRvA..93b3817Q . 17366761 .
- Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide . 10.1103/PhysRevA.93.033829 . Physical Review A . Xiaodong . Qi . Yuan-Yu . Jau . Ivan H. . Deutsch . 97 . 3 . 033829 . 2018-03-16. 1712.02916 . 2016PhRvA..93c3829K .
- Tóth. Géza. Knapp. Christian. Gühne. Otfried. Briegel. Hans J.. 2007-12-19. Optimal Spin Squeezing Inequalities Detect Bound Entanglement in Spin Models. Physical Review Letters. 99. 25. 250405. 10.1103/PhysRevLett.99.250405. 18233503. quant-ph/0702219. 2007PhRvL..99y0405T. 8079498 .
- Vitagliano. Giuseppe. Hyllus. Philipp. Egusquiza. Iñigo L.. Tóth. Géza. 2011-12-09. Spin Squeezing Inequalities for Arbitrary Spin. Physical Review Letters. 107. 24. 240502. 10.1103/PhysRevLett.107.240502. 22242980. 1104.3147. 2011PhRvL.107x0502V. 21073782.
- Lücke. Bernd. Peise. Jan. Vitagliano. Giuseppe. Arlt. Jan. Santos. Luis. Tóth. Géza. Klempt. Carsten. 2014-04-17. Detecting Multiparticle Entanglement of Dicke States. Physical Review Letters. 112. 15. 155304. 10.1103/PhysRevLett.112.155304. 1403.4542. 2014PhRvL.112o5304L. 24785048. 38230188.
- He. Q. Y.. Peng. Shi-Guo. Drummond. P. D.. Reid. M. D.. 2011-08-11. Planar quantum squeezing and atom interferometry. Physical Review A. 84. 2. 022107. 10.1103/PhysRevA.84.022107. 1101.0448. 2011PhRvA..84b2107H. 7885824.