In geometry, the snub icosidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U46. It has 104 faces (80 triangles, 12 pentagons, and 12 pentagrams), 180 edges, and 60 vertices.[1] As the name indicates, it belongs to the family of snub polyhedra.
Let
\rho ≈ 1.3247179572447454
x3-x-1
\rho
\phi
p
p= \begin{pmatrix} \rho\\ \phi2\rho2-\phi2\rho-1\\ -\phi\rho2+\phi2 \end{pmatrix}
M
M= \begin{pmatrix} 1/2&-\phi/2&1/(2\phi)\\ \phi/2&1/(2\phi)&-1/2\\ 1/(2\phi)&1/2&\phi/2 \end{pmatrix}
M
(1,0,\phi)
2\pi/5
T0,\ldots,T11
(x,y,z)
(\pmx,\pmy,\pmz)
Ti
TiMj
(i=0,\ldots,11
j=0,\ldots,4)
TiMjp
2\sqrt{\phi2\rho2-2\phi-1}
\sqrt{(\phi+2)\rho2+\rho-3\phi-1}
\sqrt{\rho2+\rho-\phi}
For a snub icosidodecadodecahedron whose edge length is 1,the circumradius is
R=
12\sqrt{\rho | |
2+\rho+2} |
≈ 1.126897912799939
r=
12\sqrt{\rho | |
2+\rho+1} |
≈ 1.0099004435452335
The medial hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform snub icosidodecadodecahedron.