Skew binomial heap explained

Skew binomial heap should not be confused with Skew heap.

Skew binomial heap
Type:heap
Invented Year:1996
Invented By:Gerth Stølting Brodal and Chris Okasaki
Insert Worst:Θ(1)
Decrease Key Avg:O(log n)
Delete Min Avg:O(log n)
Insert Avg:Θ(1)
Merge Avg:O(log n)
Find Min Avg:Θ(1)

In computer science, a skew binomial heap (or skew binomial queue) is a data structure for priority queue operations. It is a variant of the binomial heap that supports constant-time insertion operations in the worst case, rather than amortized time.

Motivation

Just as binomial heaps are based on the binary number system, skew binary heaps are based on the skew binary number system. Ordinary binomial heaps suffer from worst case logarithmic complexity for insertion, because a carry operation may cascade, analogous to binary addition. Skew binomial heaps are based on the skew binary number system, where the

k

th digit (zero-indexed) represents

2k+1-1

, instead of

2k

. Digits are either 0 or 1, except the lowest non-zero digit, which may be 2. An advantage of this system is that at most one carry operation is needed. For example, 60 is represented as 11200 in skew binary (31 + 15 + 7 + 7), and adding 1 produces 12000 (31 + 15 + 15). Since the next higher digit is guaranteed not to be 2, a carry is performed at most once. This analogy is applied to the insertion operation by introducing ternary (skew) links, which link 3 trees together. This allows the insertion operation to execute in constant time.

Structure

A skew binomial heap is a forest of skew binomial trees, which are defined inductively:

r+1

can be constructed in three ways:

r

trees, making one the leftmost child of the other;

r

trees become the children of a rank 0 tree;

r

tree become the leftmost children of another rank

r

tree.

When performing any link, the tree with the smallest key always becomes the root. Additionally, we impose the invariant that there may be only one tree of each rank, except the lowest rank which may have up to two.

The following OCaml code demonstrates the linking operations:

type 'a heap = 'a tree list and 'a tree = Tree of 'a * int * 'a tree list let rank (Tree (_, r, _)) = r

let simple_link (Tree (k1, r, c1) as t1) (Tree (k2, r, c2) as t2) = if k1 <= k2 then Tree (k1, r + 1, t2 :: c1) else Tree (k2, r + 1, t1 :: c2) let skew_link k1 (Tree (k2, r, c2) as t2) (Tree (k3, r, c3) as t3) = if k1 <= k2 && k1 <= k3 then (* type A *) Tree (k1, r + 1, [t2; t3]) else (* type B *) let t1 = Tree (k1, 0, []) in if k2 <= k3 then Tree (k2, r + 1, t1 :: t3 :: c2) else Tree (k3, r + 1, t1 :: t2 :: c3)

From these properties, it can be deduced that the root of a rank

r

skew binomial tree has up to

2r

children. The number of nodes in a skew binomial tree

t

of rank

r

is also bounded by

2r\le|t|\le2r+1-1

. Since trees of the same rank may have different numbers of nodes, there may be more than one way to distribute the ranks in the heap.

These constructions may be seen as a generalisation of binary trees and binomial trees. A skew binomial tree constructed using only simple links is an ordinary binomial tree, and using only type A skew links results in a perfectly balanced binary tree.

Operations

Find-min

Search the list of roots to find the node containing the minimum key. This takes

O(logn)

time.

In an imperative setting, one can maintain a pointer to the root containing the minimum key, allowing access in

O(1)

time. This pointer must be updated after every operation, adding only a constant overhead in time complexity.

In a functional setting without random access to nodes, one can instead represent the heap as a single tree with skew binomial trees as its children. The root of this tree is the minimum of the heap, allowing

O(1)

access. Note that this tree will not necessarily be a skew binomial tree itself. The other operations must be modified to deal with this single tree. This concept of a global root is used in the optimizations described below, albeit slightly differently.

Merge

To merge two skew binomial heaps together, first eliminate any duplicate rank trees in each heap by performing simple links. Then, merge the heaps in the same fashion as ordinary binomial heaps, which is similar to binary addition. Trees with the same ranks are linked with a simple link, and a 'carry' tree is passed upwards if necessary. Because the rank of trees in each heap is now unique, at most three trees of the same rank are considered, which is sufficient to establish a

O(logn)

bound.

let rec unique = function | t1 :: t2 :: ts when rank t1 = rank t2 -> unique (simple_link t1 t2 :: ts) | ts -> ts

let rec merge_uniq h1 h2 = match h1, h2 with | h1, [] -> h1 | [], h2 -> h2 | t1 :: ts1, t2 :: ts2 -> if rank t1 < rank t2 then t1 :: merge_uniq ts1 h2 else if rank t1 > rank t2 then t2 :: merge_uniq h1 ts2 else unique (simple_link t1 t2 :: merge_uniq ts1 ts2) let merge h1 h2 = merge_uniq (unique h1) (unique h2)

Insert

Create a skew binomial tree of rank 0 (a singleton node), containing the key to be inserted. The smallest two trees in the heap are then considered:

r

, then perform a skew link with these two trees and the singleton node. The resulting tree is of rank

r+1

. Since there can only have been at most one rank

r+1

tree in the original heap, the invariant is preserved.

As up to one link is performed, this operation executes in worst case

O(1)

time, improving on the binomial heap which relies on amortized analysis for its

O(1)

bound, with a worst case of

O(logn)

.

let insert k = function | t2 :: t3 :: ts when rank t2 = rank t3 -> skew_link k t2 t3 :: ts | ts -> Tree (k, 0, []) :: ts

Delete-min

Find and discard the node containing the minimum key. This node must be the root of a tree. Divide its children into two groups, those with rank 0, and those with rank > 0. Note that there may be more than two children with rank 0, due to skew links. The children whose rank > 0 form a valid skew binomial heap, as they are already ordered, and have no duplicates. Merging these children into the heap takes

O(logn)

time. Afterwards, reinsert each of the rank 0 children into the heap at a cost of

O(1)

each. The total time required is

O(logn)

.

Decrease-key

This operation is unchanged from binomial heaps. Decreasing the key of a node may cause it to be smaller than its parent. Repeatedly exchange it with its parent until the minimum-heap property is satisfied, at a cost of

O(logn)

time complexity. This operation requires a pointer to the node containing the key in question, and is easiest done in an imperative setting.

Optimizations

Brodal and Okasaki showed how the time complexity of the merge operation can be reduced to

O(1)

, by applying the 'bootstrapping' technique of Buchsbaum and Tarjan.[1]

Let the type of a primitive skew binomial heap containing elements of type

\alpha

be

H\alpha

. Instead of the forest of trees representation described above, we mainintain a single tree with a global root as its minimum.

Let the type of a rooted skew binomial heap be

R\alpha=\alpha x

H
R\alpha
,

that is, a pair containing an element of type

\alpha

and a primitive heap of rooted heaps.

Finally, we define the type of a bootstrapped heap by enclosing rooted heaps in an option type:

B\alpha=\{Empty\}+R\alpha

which permits the empty heap.

The operations on this bootstrapped heap are redefined accordingly. In the following OCaml code, the prime symbol ' denotes operations for bootstrapped heaps.

type 'a bootstrapped = | Empty | Root of 'a rooted

let find_min' (Root (k, h)) = k

let merge' bh1 bh2 = match bh1, bh2 with | _, Empty -> bh1 | Empty, _ -> bh2 | Root (k1, h1), Root (k2, h2) -> if k1 <= k2 then Root (k1, insert bh2 h1) else Root (k2, insert bh1 h2)

let insert' k h = merge' (Root(k, [])) h

let delete_min' (Root (x, h)) = let Root (y, h1) = find_min h in let h2 = delete_min h in Root (y, merge h1 h2)

The new merge operation uses only insert operations on primitive heaps. Thus, it executes in

O(1)

time. This technique can be applied to any priority queue with constant time insertion, and logarithmic merging.

Notes and References

  1. Buchsbaum . A.L. . Tarjan . R.E. . May 1995 . Confluently Persistent Deques via Data-Structural Bootstrapping . Journal of Algorithms . 18 . 3 . 513–547 . 10.1006/jagm.1995.1020 . 0196-6774.