Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32P (which has a 14.27-day half-life) and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.
|-id=Silicon-22| rowspan=3|22Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 8| rowspan=3|22.03611(54)#| rowspan=3|28.7(11) ms| β+, p (62%)| 21Mg| rowspan=3|0+| rowspan=3|| rowspan=3||-| β+ (37%)| 22Al|-| β+, 2p (0.7%)| 20Na|-id=Silicon-23| rowspan=3|23Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 9| rowspan=3|23.02571(54)#| rowspan=3|42.3(4) ms| β+, p (88%)| 22Mg| rowspan=3|3/2+#| rowspan=3|| rowspan=3||-| β+ (8%)| 23Al|-| β+, 2p (3.6%)| 21Na|-id=Silicon-24| rowspan=2|24Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 10| rowspan=2|24.011535(21)| rowspan=2|143.2 (21) ms| β+ (65.5%)| 24Al| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+, p (34.5%)| 23Mg|-id=Silicon-25| rowspan=2|25Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 11| rowspan=2|25.004109(11) | rowspan=2|220.6(10) ms| β+ (65%)| 25Al| rowspan=2|5/2+| rowspan=2|| rowspan=2||-| β+, p (35%)| 24Mg|-id=Silicon-26| 26Si| style="text-align:right" | 14| style="text-align:right" | 12| 25.99233382(12)| 2.2453(7) s| β+| 26Al| 0+|||-id=Silicon-27| 27Si| style="text-align:right" | 14| style="text-align:right" | 13| 26.98670469(12)| 4.117(14) s| β+| 27Al| 5/2+|||-| 28Si| style="text-align:right" | 14| style="text-align:right" | 14| 27.97692653442(55)| colspan=3 align=center|Stable| 0+| 0.92223(19)| 0.92205–0.92241|-| 29Si| style="text-align:right" | 14| style="text-align:right" | 15| 28.97649466434(60)| colspan=3 align=center|Stable| 1/2+| 0.04685(8)| 0.04678–0.04692|-id=Silicon-30| 30Si| style="text-align:right" | 14| style="text-align:right" | 16| 29.973770137(23)| colspan=3 align=center|Stable| 0+| 0.03092(11)| 0.03082–0.03102|-id=Silicon-31| 31Si| style="text-align:right" | 14| style="text-align:right" | 17| 30.975363196(46)| 157.16(20) min| β−| 31P| 3/2+|||-id=Silicon-32| 32Si| style="text-align:right" | 14| style="text-align:right" | 18| 31.97415154(32)| 157(7) y| β−| 32P| 0+| trace| cosmogenic|-id=Silicon-33| 33Si| style="text-align:right" | 14| style="text-align:right" | 19| 32.97797696(75)| 6.18(18) s| β−| 33P| 3/2+|||-| 34Si| style="text-align:right" | 14| style="text-align:right" | 20| 33.97853805(86)| 2.77(20) s| β−| 34P| 0+|||-id=Silicon-34m| style="text-indent:1em" |34mSi| colspan=3 style="text-indent:2em" | 4256.1(4) keV| <210 ns| IT| 34Si| (3−)|||-id=Silicon-35| rowspan=2|35Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 21| rowspan=2|34.984550(38)| rowspan=2|780(120) ms| β−| 35P| rowspan=2|7/2−#| rowspan=2|| rowspan=2||-| β−, n?| 34P|-id=Silicon-36| rowspan=2|36Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 22| rowspan=2|35.986649(77)| rowspan=2|503(2) ms| β− (88%)| 36P| rowspan=2|0+| rowspan=2|| rowspan=2||-| β−, n (12%)| 35P|-id=Silicon-37| rowspan=3|37Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 23| rowspan=3|36.99295(12)| rowspan=3|141.0(35) ms| β− (83%)| 37P| rowspan=3|(5/2−)| rowspan=3|| rowspan=3||-| β−, n (17%)| 36P|-| β−, 2n?| 35P|-id=Silicon-38| rowspan=2|38Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 24| rowspan=2|37.99552(11)| rowspan=2|63(8) ms| β− (75%)| 38P| rowspan=2|0+| rowspan=2|| rowspan=2||-| β−, n (25%)| 37P|-id=Silicon-39| rowspan=3|39Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 25| rowspan=3|39.00249(15)| rowspan=3|41.2(41) ms| β− (67%)| 39P| rowspan=3|(5/2−)| rowspan=3|| rowspan=3||-| β−, n (33%)| 38P|-| β−, 2n?| 37P|-id=Silicon-40| rowspan=3|40Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 26| rowspan=3|40.00608(13)| rowspan=3|31.2(26) ms| β− (62%)| 40P| rowspan=3|0+| rowspan=3|| rowspan=3||-| β−, n (38%)| 39P|-| β−, 2n?| 38P|-id=Silicon-41| rowspan=3|41Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 27| rowspan=3|41.01417(32)#| rowspan=3|20.0(25) ms| β−, n (>55%)| 40P| rowspan=3|7/2−#| rowspan=3|| rowspan=3||-| β− (<45%)| 41P|-| β−, 2n?| 39P|-id=Silicon-42| rowspan=3|42Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 28| rowspan=3|42.01808(32)#| rowspan=3|15.5(4 (stat), 16 (sys)) ms[1] | β− (51%)| 42P| rowspan=3|0+| rowspan=3|| rowspan=3||-| β−, n (48%)| 41P|-| β−, 2n (1%)| 40P|-id=Silicon-43| rowspan=3|43Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 29| rowspan=3|43.02612(43)#| rowspan=3|13(4 (stat), 2 (sys)) ms[1] | β−, n (52%)| 42P| rowspan=3|3/2−#| rowspan=3|| rowspan=3||-| β− (27%)| 43P|-| β−, 2n (21%)| 41P|-id=Silicon-44| rowspan=3|44Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 30| rowspan=3|44.03147(54)#| rowspan=3|4# ms [>360 ns]| β−?| 44P| rowspan=3|0+| rowspan=3|| rowspan=3||-| β−, n?| 43P|-| β−, 2n?| 42P|-id=Silicon-45| 45Si[2] | style="text-align:right" | 14| style="text-align:right" | 31| 45.03982(64)#| 4# ms||| 3/2−#|||-id=Silicon-46| 46Si[2] | style="text-align:right" | 14| style="text-align:right" | 32|||||||
Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence.[3] Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas.[4] Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a 93.75adj=onNaNadj=on sphere of the isotope and determining the exact number of atoms in the sample.[5] [6]
Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.[7] [8]
Silicon-29 is of note as the only stable silicon isotope with a nuclear spin (I = 1/2).[9] As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.[10]
Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion.[11] Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full.[12] [13] Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately .[14]