Isotopes of silicon explained

Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32P (which has a 14.27-day half-life) and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.

List of isotopes

|-id=Silicon-22| rowspan=3|22Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 8| rowspan=3|22.03611(54)#| rowspan=3|28.7(11) ms| β+, p (62%)| 21Mg| rowspan=3|0+| rowspan=3|| rowspan=3||-| β+ (37%)| 22Al|-| β+, 2p (0.7%)| 20Na|-id=Silicon-23| rowspan=3|23Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 9| rowspan=3|23.02571(54)#| rowspan=3|42.3(4) ms| β+, p (88%)| 22Mg| rowspan=3|3/2+#| rowspan=3|| rowspan=3||-| β+ (8%)| 23Al|-| β+, 2p (3.6%)| 21Na|-id=Silicon-24| rowspan=2|24Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 10| rowspan=2|24.011535(21)| rowspan=2|143.2 (21) ms| β+ (65.5%)| 24Al| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+, p (34.5%)| 23Mg|-id=Silicon-25| rowspan=2|25Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 11| rowspan=2|25.004109(11) | rowspan=2|220.6(10) ms| β+ (65%)| 25Al| rowspan=2|5/2+| rowspan=2|| rowspan=2||-| β+, p (35%)| 24Mg|-id=Silicon-26| 26Si| style="text-align:right" | 14| style="text-align:right" | 12| 25.99233382(12)| 2.2453(7) s| β+| 26Al| 0+|||-id=Silicon-27| 27Si| style="text-align:right" | 14| style="text-align:right" | 13| 26.98670469(12)| 4.117(14) s| β+| 27Al| 5/2+|||-| 28Si| style="text-align:right" | 14| style="text-align:right" | 14| 27.97692653442(55)| colspan=3 align=center|Stable| 0+| 0.92223(19)| 0.92205–0.92241|-| 29Si| style="text-align:right" | 14| style="text-align:right" | 15| 28.97649466434(60)| colspan=3 align=center|Stable| 1/2+| 0.04685(8)| 0.04678–0.04692|-id=Silicon-30| 30Si| style="text-align:right" | 14| style="text-align:right" | 16| 29.973770137(23)| colspan=3 align=center|Stable| 0+| 0.03092(11)| 0.03082–0.03102|-id=Silicon-31| 31Si| style="text-align:right" | 14| style="text-align:right" | 17| 30.975363196(46)| 157.16(20) min| β| 31P| 3/2+|||-id=Silicon-32| 32Si| style="text-align:right" | 14| style="text-align:right" | 18| 31.97415154(32)| 157(7) y| β| 32P| 0+| trace| cosmogenic|-id=Silicon-33| 33Si| style="text-align:right" | 14| style="text-align:right" | 19| 32.97797696(75)| 6.18(18) s| β| 33P| 3/2+|||-| 34Si| style="text-align:right" | 14| style="text-align:right" | 20| 33.97853805(86)| 2.77(20) s| β| 34P| 0+|||-id=Silicon-34m| style="text-indent:1em" |34mSi| colspan=3 style="text-indent:2em" | 4256.1(4) keV| <210 ns| IT| 34Si| (3−)|||-id=Silicon-35| rowspan=2|35Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 21| rowspan=2|34.984550(38)| rowspan=2|780(120) ms| β| 35P| rowspan=2|7/2−#| rowspan=2|| rowspan=2||-| β, n?| 34P|-id=Silicon-36| rowspan=2|36Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 22| rowspan=2|35.986649(77)| rowspan=2|503(2) ms| β (88%)| 36P| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (12%)| 35P|-id=Silicon-37| rowspan=3|37Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 23| rowspan=3|36.99295(12)| rowspan=3|141.0(35) ms| β (83%)| 37P| rowspan=3|(5/2−)| rowspan=3|| rowspan=3||-| β, n (17%)| 36P|-| β, 2n?| 35P|-id=Silicon-38| rowspan=2|38Si| rowspan=2 style="text-align:right" | 14| rowspan=2 style="text-align:right" | 24| rowspan=2|37.99552(11)| rowspan=2|63(8) ms| β (75%)| 38P| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (25%)| 37P|-id=Silicon-39| rowspan=3|39Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 25| rowspan=3|39.00249(15)| rowspan=3|41.2(41) ms| β (67%)| 39P| rowspan=3|(5/2−)| rowspan=3|| rowspan=3||-| β, n (33%)| 38P|-| β, 2n?| 37P|-id=Silicon-40| rowspan=3|40Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 26| rowspan=3|40.00608(13)| rowspan=3|31.2(26) ms| β (62%)| 40P| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n (38%)| 39P|-| β, 2n?| 38P|-id=Silicon-41| rowspan=3|41Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 27| rowspan=3|41.01417(32)#| rowspan=3|20.0(25) ms| β, n (>55%)| 40P| rowspan=3|7/2−#| rowspan=3|| rowspan=3||-| β (<45%)| 41P|-| β, 2n?| 39P|-id=Silicon-42| rowspan=3|42Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 28| rowspan=3|42.01808(32)#| rowspan=3|15.5(4 (stat), 16 (sys)) ms[1] | β (51%)| 42P| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n (48%)| 41P|-| β, 2n (1%)| 40P|-id=Silicon-43| rowspan=3|43Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 29| rowspan=3|43.02612(43)#| rowspan=3|13(4 (stat), 2 (sys)) ms[1] | β, n (52%)| 42P| rowspan=3|3/2−#| rowspan=3|| rowspan=3||-| β (27%)| 43P|-| β, 2n (21%)| 41P|-id=Silicon-44| rowspan=3|44Si| rowspan=3 style="text-align:right" | 14| rowspan=3 style="text-align:right" | 30| rowspan=3|44.03147(54)#| rowspan=3|4# ms [>360&nbsp;ns]| β?| 44P| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n?| 43P|-| β, 2n?| 42P|-id=Silicon-45| 45Si[2] | style="text-align:right" | 14| style="text-align:right" | 31| 45.03982(64)#| 4# ms||| 3/2−#|||-id=Silicon-46| 46Si[2] | style="text-align:right" | 14| style="text-align:right" | 32|||||||

Silicon-28

Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence.[3] Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas.[4] Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a 93.75adj=onNaNadj=on sphere of the isotope and determining the exact number of atoms in the sample.[5] [6]

Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.[7] [8]

Silicon-29

Silicon-29 is of note as the only stable silicon isotope with a nuclear spin (I = 1/2).[9] As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.[10]

Silicon-34

Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion.[11] Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full.[12] [13] Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately .[14]

External links

Notes and References

  1. Crawford . H. L. . Tripathi . V. . Allmond . J. M. . et al. . Crossing N  28 toward the neutron drip line: first measurement of half-lives at FRIB . 2022 . Physical Review Letters . 129 . 212501 . 212501 . 10.1103/PhysRevLett.129.212501. 36461950 . 2022PhRvL.129u2501C . 253600995 . free .
  2. Yoshimoto . Masahiro . Suzuki . Hiroshi . Fukuda . Naoki . Takeda . Hiroyuki . Shimizu . Yohei . Yanagisawa . Yoshiyuki . Sato . Hiromi . Kusaka . Kensuke . Ohtake . Masao . Yoshida . Koichi . Michimasa . Shin’ichiro . Discovery of Neutron-Rich Silicon Isotopes 45,46Si . Progress of Theoretical and Experimental Physics . Oxford University Press (OUP) . 2024 . 10 . 2024 . 2050-3911 . 10.1093/ptep/ptae155 . free.
  3. 2014-08-11 . Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing . NIST . en.
  4. Dwyer . K J . Pomeroy . J M . Simons . D S . Steffens . K L . Lau . J W . 2014-08-30 . Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing . Journal of Physics D: Applied Physics . 47 . 34 . 345105 . 10.1088/0022-3727/47/34/345105 . 0022-3727.
  5. Powell, Devin (1 July 2008). "Roundest Objects in the World Created". New Scientist. Retrieved 16 June 2015.
  6. Keats . Jonathon . The Search for a More Perfect Kilogram . Wired . 19 . 10 . 16 December 2023.
  7. Woosley . S. . Janka . T. . The physics of core collapse supernovae . 2006 . astro-ph/0601261 . 10.1038/nphys172 . 1 . 3 . Nature Physics . 147–154. 2005NatPh...1..147W . 10.1.1.336.2176 . 118974639 .
  8. Book: Narlikar, Jayant V. . From Black Clouds to Black Holes . 1995 . . 978-9810220334 . 94.
  9. Book: Greenwood . Norman N. . Chemistry of the Elements . Earnshaw . Alan . Butterworth-Heinemann . 1997 . 978-0-08-037941-8 . 2nd.
  10. Watkins . G. D. . Corbett . J. W. . 1961-02-15 . Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center . Physical Review . en . 121 . 4 . 1001–1014 . 10.1103/PhysRev.121.1001 . 1961PhRv..121.1001W . 0031-899X.
  11. Lică . R. . Rotaru . F. . Borge . M. J. G. . Grévy . S. . Negoiţă . F. . Poves . A. . Sorlin . O. . Andreyev . A. N. . Borcea . R. . Costache . C. . De Witte . H. . Fraile . L. M. . Greenlees . P. T. . Huyse . M. . Ionescu . A. . Kisyov . S. . Konki . J. . Lazarus . I. . Madurga . M. . Mărginean . N. . Mărginean . R. . Mihai . C. . Mihai . R. E. . Negret . A. . Nowacki . F. . Page . R. D. . Pakarinen . J. . Pucknell . V. . Rahkila . P. . Rapisarda . E. . Şerban . A. . Sotty . C. O. . Stan . L. . Stănoiu . M. . Tengblad . O. . Turturică . A. . Van Duppen . P. . Warr . N. . Dessagne . Ph. . Stora . T. . Borcea . C. . Călinescu . S. . Daugas . J. M. . Filipescu . D. . Kuti . I. . Franchoo . S. . Gheorghe . I. . Morfouace . P. . Morel . P. . Mrazek . J. . Pietreanu . D. . Sohler . D. . Stefan . I. . Şuvăilă . R. . Toma . S. . Ur . C. A. . Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34 . Physical Review C . 11 September 2019 . 100 . 3 . 034306 . 10.1103/PhysRevC.100.034306. free . 1908.11626 .
  12. News: Physicists find atomic nucleus with a 'bubble' in the middle . 26 December 2023 . 24 October 2016.
  13. Mutschler . A. . Lemasson . A. . Sorlin . O. . Bazin . D. . Borcea . C. . Borcea . R. . Dombrádi . Z. . Ebran . J.-P. . Gade . A. . Iwasaki . H. . Khan . E. . Lepailleur . A. . Recchia . F. . Roger . T. . Rotaru . F. . Sohler . D. . Stanoiu . M. . Stroberg . S. R. . Tostevin . J. A. . Vandebrouck . M. . Weisshaar . D. . Wimmer . K. . A proton density bubble in the doubly magic 34Si nucleus . Nature Physics . February 2017 . 13 . 2 . 152–156 . 10.1038/nphys3916 . 1707.03583.
  14. Bonetti . R. . Guglielmetti . A. . 2007 . Cluster radioactivity: an overview after twenty years . https://web.archive.org/web/20160919014152/http://www.rrp.infim.ro/2007_59_2/10_bonetti.pdf . 19 September 2016 . Romanian Reports in Physics . 59 . 301–310.