Semi-empirical quantum chemistry method explained

Semi-empirical quantum chemistry methods are based on the Hartree–Fock formalism, but make many approximations and obtain some parameters from empirical data. They are very important in computational chemistry for treating large molecules where the full Hartree–Fock method without the approximations is too expensive. The use of empirical parameters appears to allow some inclusion of electron correlation effects into the methods.

Within the framework of Hartree–Fock calculations, some pieces of information (such as two-electron integrals) are sometimes approximated or completely omitted. In order to correct for this loss, semi-empirical methods are parametrized, that is their results are fitted by a set of parameters, normally in such a way as to produce results that best agree with experimental data, but sometimes to agree with ab initio results.

Type of simplifications used

Semi-empirical methods follow what are often called empirical methods where the two-electron part of the Hamiltonian is not explicitly included. For π-electron systems, this was the Hückel method proposed by Erich Hückel.[1] [2] [3] [4] [5] [6] For all valence electron systems, the extended Hückel method was proposed by Roald Hoffmann.[7]

Semi-empirical calculations are much faster than their ab initio counterparts, mostly due to the use of the zero differential overlap approximation. Their results, however, can be very wrong if the molecule being computed is not similar enough to the molecules in the database used to parametrize the method.

Preferred application domains

Methods restricted to π-electrons

These methods exist for the calculation of electronically excited states of polyenes, both cyclic and linear. These methods, such as the Pariser–Parr–Pople method (PPP), can provide good estimates of the π-electronic excited states, when parameterized well.[8] [9] [10] For many years, the PPP method outperformed ab initio excited state calculations.

Methods restricted to all valence electrons.

These methods can be grouped into several groups:

See also

Notes and References

  1. Hückel . Erich . Quantentheoretische Beiträge zum Benzolproblem I. Zeitschrift für Physik . Springer Science and Business Media LLC . 70 . 3–4 . 1931 . 1434-6001 . 10.1007/bf01339530 . 204–286 . 1931ZPhy...70..204H . 186218131 . de.
  2. Hückel . Erich . Quanstentheoretische Beiträge zum Benzolproblem II. Zeitschrift für Physik . Springer Science and Business Media LLC . 72 . 5–6 . 1931 . 1434-6001 . 10.1007/bf01341953 . 310–337 . 1931ZPhy...72..310H . de.
  3. Hückel . Erich . Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III . Zeitschrift für Physik . Springer Science and Business Media LLC . 76 . 9–10 . 1932 . 1434-6001 . 10.1007/bf01341936 . 628–648 . 1932ZPhy...76..628H . 121787219 . de.
  4. Hückel . Erich . Die freien Radikale der organischen Chemie IV. Zeitschrift für Physik . Springer Science and Business Media LLC . 83 . 9–10 . 1933 . 1434-6001 . 10.1007/bf01330865 . 632–668 . 1933ZPhy...83..632H . 121710615 . de.
  5. Hückel Theory for Organic Chemists, C. A. Coulson, B. O'Leary and R. B. Mallion, Academic Press, 1978.
  6. [Andrew Streitwieser]
  7. Hoffmann . Roald . An Extended Hückel Theory. I. Hydrocarbons . The Journal of Chemical Physics . AIP Publishing . 39 . 6 . 1963-09-15 . 0021-9606 . 10.1063/1.1734456 . 1397–1412. 1963JChPh..39.1397H .
  8. Pariser . Rudolph . Parr . Robert G. . A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I. . The Journal of Chemical Physics . AIP Publishing . 21 . 3 . 1953 . 0021-9606 . 10.1063/1.1698929 . 466–471. 1953JChPh..21..466P .
  9. Pariser . Rudolph . Parr . Robert G. . A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II . The Journal of Chemical Physics . AIP Publishing . 21 . 5 . 1953 . 0021-9606 . 10.1063/1.1699030 . 767–776. 1953JChPh..21..767P .
  10. Pople . J. A. . Electron interaction in unsaturated hydrocarbons . Transactions of the Faraday Society . Royal Society of Chemistry (RSC) . 49 . 1953 . 0014-7672 . 10.1039/tf9534901375 . 1375.
  11. J. Pople and D. Beveridge, Approximate Molecular Orbital Theory, McGraw–Hill, 1970.
  12. Ira Levine, Quantum Chemistry, Prentice Hall, 4th edition, (1991), pg 579–580
  13. C. J. Cramer, Essentials of Computational Chemistry, Wiley, Chichester, (2002), pg 126–131
  14. J. J. P. Stewart, Reviews in Computational Chemistry, Volume 1, Eds. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 45, (1990)
  15. Ground states of molecules. 38. The MNDO method. Approximations and parameters . Michael J. S. Dewar . Walter Thiel . amp . Journal of the American Chemical Society . 99 . 4899–4907 . 1977 . 10.1021/ja00457a004 . 15 .
  16. Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions. Michael J. S. Dewar . Eve G. Zoebisch . Eamonn F. Healy . James J. P. Stewart . Journal of the American Chemical Society . 107 . 3902–3909 . 1985 . 10.1021/ja00299a024 . 13 .
  17. Optimization of parameters for semiempirical methods I. Method . James J. P. Stewart . The Journal of Computational Chemistry . 10 . 209–220 . 1989 . 10.1002/jcc.540100208 . 2 . 36907984 .
  18. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements . 10.1007/s00894-007-0233-4 . 2007 . Stewart . James J. P. . Journal of Molecular Modeling . 13 . 12 . 1173–1213 . 17828561 . 2039871 .
  19. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters . 10.1007/s00894-012-1667-x . 2013 . Stewart . James J. P. . Journal of Molecular Modeling . 19 . 1 . 1–32 . 23187683 . 3536963 .
  20. M. Zerner, Reviews in Computational Chemistry, Volume 2, Eds. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 313, (1991)
  21. Nanda . D. N. . Jug . Karl . SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization . Theoretica Chimica Acta . Springer Science and Business Media LLC . 57 . 2 . 1980 . 0040-5744 . 10.1007/bf00574898 . 95–106. 98468383 .
  22. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters . 10.1021/acs.jctc.5b01046 . 2016 . Dral . Pavlo O. . Wu . Xin . Spörkel . Lasse . Koslowski . Axel . Weber . Wolfgang . Steiger . Rainer . Scholten . Mirjam . Thiel . Walter . Journal of Chemical Theory and Computation . 12 . 3 . 1082–1096 . 26771204 . 4785507 .
  23. 10.1021/acs.jctc.6b00403 . Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States . 2016 . Tuna . Deniz . Lu . You . Koslowski . Axel . Thiel . Walter . Journal of Chemical Theory and Computation . 12 . 9 . 4400–4422 . 27380455 . free .
  24. Density-functional tight binding—an approximate density-functional theory method . 10.1002/wcms.1094 . 2012 . Seifert . Gotthard . Joswig . Jan-Ole . WIREs Computational Molecular Science . 2 . 3 . 456–465 . 121521740 .
  25. Bannwarth . Christoph . Ehlert . Sebastian . Grimme . Stefan . 2019-03-12 . GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions . Journal of Chemical Theory and Computation . en . 15 . 3 . 1652–1671 . 10.1021/acs.jctc.8b01176 . 30741547 . 73419235 . 1549-9618. free .
  26. 10.1063/5.0141686 . Development of NOTCH, an all-electron, beyond-NDDO semiempirical method: Application to diatomic molecules . 2023 . Wang . Zikuan . Neese . Frank . The Journal of Chemical Physics . 158 . 18 . 184102 . 37154284 . 2023JChPh.158r4102W . 258565304 . free .