Official Name: | Sedenions |
Symbol: | S |
Type: | Hypercomplex algebra |
Units: | e0, ..., e15 |
Identity: | e0 |
S
The sedenions are obtained by applying the Cayley–Dickson construction to the octonions, which can be mathematically expressed as
S=l{CD}(O,1)
The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by .
Every sedenion is a linear combination of the unit sedenions
e0
e1
e2
e3
e15
x=x0e0+x1e1+x2e2+ … +x14e14+x15e15.
Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is distributive over addition.
Like other algebras based on the Cayley–Dickson construction, the sedenions contain the algebra they were constructed from. So, they contain the octonions (generated by
e0
e7
e0
e3
e0
e1
e0
Like octonions, multiplication of sedenions is neither commutative nor associative. However, in contrast to the octonions, the sedenions do not even have the property of being alternative. They do, however, have the property of power associativity, which can be stated as that, for any element
x
S
xn
e0
(e3+e10)(e6-e15)
The sedenion multiplication table is shown below:
eiej | ej | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e0 e1 | e2 e3 | e4 e5 | e6 e7 | e8 e9 | e10 e11 | e12 e13 | e14 e15 | |||||||||||
ei | e0 | -- color: white; when minus sign --> | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
e1 | e1 | -e0 | e3 | -e2 | e5 | -e4 | -e7 | e6 | e9 | -e8 | -e11 | e10 | -e13 | e12 | e15 | -e14 | ||
e2 | e2 | -e3 | -e0 | e1 | e6 | e7 | -e4 | -e5 | e10 | e11 | -e8 | -e9 | -e14 | -e15 | e12 | e13 | ||
e3 | e3 | e2 | -e1 | -e0 | e7 | -e6 | e5 | -e4 | e11 | -e10 | e9 | -e8 | -e15 | e14 | -e13 | e12 | ||
e4 | e4 | -e5 | -e6 | -e7 | -e0 | e1 | e2 | e3 | e12 | e13 | e14 | e15 | -e8 | -e9 | -e10 | -e11 | ||
e5 | e5 | e4 | -e7 | e6 | -e1 | -e0 | -e3 | e2 | e13 | -e12 | e15 | -e14 | e9 | -e8 | e11 | -e10 | ||
e6 | e6 | e7 | e4 | -e5 | -e2 | e3 | -e0 | -e1 | e14 | -e15 | -e12 | e13 | e10 | -e11 | -e8 | e9 | ||
e7 | e7 | -e6 | e5 | e4 | -e3 | -e2 | e1 | -e0 | e15 | e14 | -e13 | -e12 | e11 | e10 | -e9 | -e8 | ||
e8 | e8 | -e9 | -e10 | -e11 | -e12 | -e13 | -e14 | -e15 | -e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | ||
e9 | e9 | e8 | -e11 | e10 | -e13 | e12 | e15 | -e14 | -e1 | -e0 | -e3 | e2 | -e5 | e4 | e7 | -e6 | ||
e10 | e10 | e11 | e8 | -e9 | -e14 | -e15 | e12 | e13 | -e2 | e3 | -e0 | -e1 | -e6 | -e7 | e4 | e5 | ||
e11 | e11 | -e10 | e9 | e8 | -e15 | e14 | -e13 | e12 | -e3 | -e2 | e1 | -e0 | -e7 | e6 | -e5 | e4 | ||
e12 | e12 | e13 | e14 | e15 | e8 | -e9 | -e10 | -e11 | -e4 | e5 | e6 | e7 | -e0 | -e1 | -e2 | -e3 | ||
e13 | e13 | -e12 | e15 | -e14 | e9 | e8 | e11 | -e10 | -e5 | -e4 | e7 | -e6 | e1 | -e0 | e3 | -e2 | ||
e14 | e14 | -e15 | -e12 | e13 | e10 | -e11 | e8 | e9 | -e6 | -e7 | -e4 | e5 | e2 | -e3 | -e0 | e1 | ||
e15 | e15 | e14 | -e13 | -e12 | e11 | e10 | -e9 | e8 | -e7 | e6 | -e5 | -e4 | e3 | e2 | -e1 | -e0 |
From the above table, we can see that:
e0ei=eie0=eiforalli,
eiei=-e0fori ≠ 0,
eiej=-ejeifori ≠ jwithi,j ≠ 0.
The sedenions are not fully anti-associative. Choose any four generators,
i,j,k
l
In particular, in the table above, using
e1,e2,e4
e8
(e1e2)e12=e1(e2e12)=-e15
The particular sedenion multiplication table shown above is represented by 35 triads. The table and its triads have been constructed from an octonion represented by the bolded set of 7 triads using Cayley–Dickson construction. It is one of 480 possible sets of 7 triads (one of two shown in the octonion article) and is the one based on the Cayley–Dickson construction of quaternions from two possible quaternion constructions from the complex numbers. The binary representations of the indices of these triples bitwise XOR to 0. These 35 triads are:
The list of 84 sets of zero divisors
\{ea,eb,ec,ed\}
(ea+eb)\circ(ec+ed)=0
showed that the space of pairs of norm-one sedenions that multiply to zero is homeomorphic to the compact form of the exceptional Lie group G2. (Note that in his paper, a "zero divisor" means a pair of elements that multiply to zero.)
SU(3)c x U(1)em |
C ⊗ S
\rho+=1/2(1+ie15)
e15
e7
O
C ⊗ O
Cl(6)
SU(3)c x U(1)em |
S
C ⊗ O
(C ⊗ O)L\congCl(6)
(C ⊗ S)L
Cl(2)
Sedenion neural networks provide a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.[3] [4]