Sebacic acid explained

Sebacic acid is a naturally occurring dicarboxylic acid with the chemical formula . It is a white flake or powdered solid. Sebaceus is Latin for tallow candle, sebum is Latin for tallow, and refers to its use in the manufacture of candles. Sebacic acid is a derivative of castor oil.

In the industrial setting, sebacic acid and its homologues such as azelaic acid can be used as a monomer for nylon 610, plasticizers, lubricants, hydraulic fluids, cosmetics, candles, etc.

It can be used as a surfactant in the lubricating oil industry to increase the antirust properties of lubricating oils on metals.

Production and reactions

Sebacic acid is produced from castor oil by cleavage of ricinoleic acid, which is obtained from castor oil. Octanol and glycerin are byproducts.

It can also be obtained from decalin via the a hydroperoxide, which rearranges to give a hydroxycyclodecanone, which dehydrates to give cyclodecenone, a precursor to sebacic acid.

Sebacic acid has also been produced commercially by Kolbe electrolysis of adipic acid.[1]

Potential medical significance

Sebum is a secretion by skin sebaceous glands. It is a waxy set of lipids composed of triglycerides (≈41%), wax esters (≈26%), squalene (≈12%), and free fatty acids (≈16%).[2] [3] Included in the free fatty acid secretions in sebum are polyunsaturated fatty acids and sebacic acid. Sebacic acid is also found in other lipids that coat the skin surface. Human neutrophils can convert sebacic acid to its 5-oxo analog, i.e.,, a structural analog of 5-oxo-eicosatetraenoic acid and like this oxo-eicosatetraenoic acid is an exceptionally potent activator of eosinophils, monocytes, and other pro-inflammatory cells from humans and other species. This action is mediated by the OXER1 receptor on these cells. It is suggested that sebacic acid is converted to its 5-oxo analog during, and thereby stimulates pro-inflammatory cells to contribute to the worsening of, various inflammatory skin conditions.[4]

Notes and References

  1. Development of Kolbe Electrosynthesis of Sebacic Acid. Seko. Maomi. Yomiyama. Akira. Isoya. Toshiro. CEER, Chemical Economy & Engineering Review. 1979. 11. 9. 48-50 .
  2. Thody . A. J. . S. . Shuster . Control and Function of Sebaceous Glands . Physiological Reviews . 69 . 2 . 1989 . 383–416 . 10.1152/physrev.1989.69.2.383. 2648418 .
  3. Cheng JB, Russell DW . Mammalian Wax Biosynthesis II: Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family . The Journal of Biological Chemistry . 279 . 36 . 37798–807 . September 2004 . 15220349 . 2743083 . 10.1074/jbc.M406226200 . free .
  4. Powell WS, Rokach J . Targeting the OXE receptor as a potential novel therapy for asthma . Biochemical Pharmacology . 113930 . March 2020 . 179 . 32240653 . 10.1016/j.bcp.2020.113930 . 214768793 . 10656995 .