Sampling design explained

In the theory of finite population sampling, a sampling design specifies for every possible sample its probability of being drawn.

Mathematical formulation

Mathematically, a sampling design is denoted by the function

P(S)

which gives the probability of drawing a sample

S.

An example of a sampling design

During Bernoulli sampling,

P(S)

is given by

P(S)=

Nsample(S)
q

x

(Npop-Nsample(S))
(1-q)

where for each element

q

is the probability of being included in the sample and

Nsample(S)

is the total number of elements in the sample

S

and

Npop

is the total number of elements in the population (before sampling commenced).

Sample design for managerial research

In business research, companies must often generate samples of customers, clients, employees, and so forth to gather their opinions. Sample design is also a critical component of marketing research and employee research for many organizations. During sample design, firms must answer questions such as:

These issues require very careful consideration, and good commentaries are provided in several sources.[1] [2]

See also

Further reading

Notes and References

  1. Salant, Priscilla, I. Dillman, and A. Don. How to conduct your own survey. No. 300.723 S3.. 1994.
  2. Hansen, Morris H., William N. Hurwitz, and William G. Madow. "Sample Survey Methods and Theory." (1953).