Rice-fish system explained

A rice-fish system is a rice polyculture, a practice that integrates rice agriculture with aquaculture, most commonly with freshwater fish. It is based on a mutually beneficial relationship between rice and fish in the same agroecosystem. The system was recognized by the FAO in 2002 as one of the first Globally Important Agricultural Heritage Systems.

The benefits of rice-fish systems include increased rice yield, the production of an additional (fish) crop on the same land, diversification of farm production, increased food security, and reduced need for inputs of fertilizer and pesticide. Because fish eat insects and snails, the systems may reduce mosquito-borne diseases such as malaria and dengue fever, and snail-born parasites such as the trematodes which cause schistosomiasis. The reduction in chemical inputs may reduce environmental harms caused by their release into the environment. The increased biodiversity may reduce methane emissions from rice fields.

History

The simultaneous cultivation of rice and fish is thought to be over 2,000 years old. Ancient clay models of rice fields, containing miniature models of fish such as the common carp, have been found in Han dynasty tombs in China.[1] The system originated somewhere in continental Asia such as in India, Thailand, northern Vietnam and southern China. The practice likely started in China since they were early practitioners of aquaculture.

Common carp were probably among the first fish used in rice-fish systems. Wei dynasty records from 220 to 265 AD mention that "a small fish with yellow scales and a red tail, grown in the rice fields of Pi County northeast of Chengdu, Sichuan Province, can be used for making sauce". Liu Xun wrote the first descriptions of the system, with texts written during 900 AD in the Tang dynasty.[1] Rice-fish systems may have evolved from pond culture in China; one theory proposes that the practice started when farmers decided to place excess fry in their ponds and found the results beneficial.[1] The practice may have developed independently from China in other Asian countries; there is evidence that it spread from India to neighbouring Asian countries over 1500 years ago.

The practice slowly gained popularity among farmers, and by the mid-1900s, over 28 countries on all continents except Antarctica used rice-fish systems. Historically, the common carp was the most commonly used fish, with the Mozambique tilapia (Oreochromis mossambicus) in second place. As the practice spread throughout the world, new species were adopted. For example, Malaysia introduced the snakeskin gourami (Trichogaster pectoralis) and Egypt used the Nile tilapia (Oreochromis niloticus). An early study, in Jiangsu Province in 1935, found that growing black carp (Mylopharyngodon piceus), grass carp, silver carp, bighead carp (Aristichthys nobilis) and common carp together with rice was beneficial.[1] Rice-fish systems were traditionally low maintenance, growing additional animal protein alongside the staple food, rice. The space used for fish-rice systems in China grew from 441027ha to and the production increased dramatically, going from 36,330 tonnes to 206,915 tonnes between 1983 and 1994.In 2002, the rice-fish system became one of the first Globally Important Agricultural Heritage Systems to be recognized by the FAO.[2]

Principle

Mutualism

Rice and fish form a mutualistic relationship: they both benefit from growing together. The rice provides the fish with shelter and shade and a reduced water temperature, along with herbivorous insects and other small animals that feed on the rice.[3] Rice benefits from nitrogenous waste from the fish, while the fish reduce insect pests such as brown planthoppers, diseases such as sheath blight of rice, and weeds.[3] By controlling weeds, competition for nutrients is decreased. CO2 released by the fish may be used in photosynthesis by the rice.

The constant fish movements allow for the loosening of the surface soil which can:

Soil fertility is improved by the integration of fish, whose manure is a fertilizer recycling organic matter, nitrogen, phosphorus and potassium. The inclusion of fish in rice-fields helps to maintain soil health, biodiversity, and productivity.[3]

The aquatic diversity in rice-fish systems includes phytoplankton, zooplankton), soil benthic fauna and microbial populations; all of these play a role in enhancing soil fertility and sustaining long-term production.[5] However, benthic communities may be disturbed by constant grazing by the fish.[5]

Application as a polyculture

Rice-fish systems are polycultures based on the potential for mutual benefit. To put this into practice, channels are added in the previously flat rice fields to allow the fish to continue growing even during rice harvest and dry seasons.[2] [6]

Before creating the rice field, the field is treated with 4.5– of organic manure.[2] Organic manure is applied again during the main growing season, with about 1.5t/ha applied every 15 days.[2] This provides nutrients for rice and the added cultures of plankton and benthos that feed the fish.[2] During the main growing season, supplementary feeds complement the plankton and benthos culture and are used once or twice a day.[2] The supplementary feeds include fish meal, soybean cake, rice bran and wheat bran.[2] Fish are stocked at a rate between 0.25/m21/m2.[6]

Unwanted fish or invasive species can threaten the mutualistic relationship between rice and fish, and therefore reduce productivity. For example, in the integrated Rice-Swamp Loach Aquaculture Model, catfish, snakeheads (Channa argus) and paddy eels (Monopterus albus) are considered as unwanted species.[2] Predatory birds are a threat; bird netting can be used to protect the fish.[2]

Benefits

Economic

Net gains vary between and within countries. Overall, integrated rice-fish fields have a positive impact on net returns. In Bangladesh, net returns are over 50% greater than in rice monocultures. In China, the net return by region is between 45 and 270% greater. A case of loss in net returns was found in Thailand with only 80% of the profitability of rice monocultures. This might be caused by the initial investment needed when starting the system. The use of rice-fish systems has resulted in an increase in rice yields and productivity from 6.7– and simultaneously also from 0.75– of fish. Rice-fish systems form a possible tourist attraction, as the practice creates a distinctive landscape.[7] The addition of fish diversifies the farm's production, increases food security, and generates income; Halwart and Gupta comment that if it also increases rice yield and cuts the need for fertilizer and pesticide inputs, these are "added bonus[es]".

Public health

In 1981, the Health Commission of China recognised integrated rice fields as a possible measure to decrease the population of mosquitoes, which carry diseases such as malaria and dengue fever.[2] The larvae density is reduced in integrated rice fields since freshwater fishes routinely prey on the larvae. Rice-fish systems may decrease the number of snails, known to carry trematodes which in turn cause schistosomiasis. Farmers' diets may improve with the addition of fish protein.[7] Reduced antibiotic resistance is another possible benefit; bacteria in rice-crayfish systems have a lower frequency and a lower diversity of antibiotic resistance genes than aquaculture systems without rice.[8]

Environmental

As fish control pests and weeds, fewer chemicals (such as pesticides and herbicides) are used, reducing the release of these agricultural chemicals into the environment. Paddies with fish have been measured to require 24% less fertilizer input and 68% less pesticide usage than rice grown alone.[9] In addition, farmers often choose not to use pesticides, to avoid harming the fish.

In turn, biodiversity is increased. For example, the addition of common carp (Cyprinus carpio) to a rice monoculture increased the number of energy transfer pathways by 78.69%, while the energy transfer efficiency increased by 67.86%.[10]

In addition, rice-fish systems can reduce methane emissions compared to rice monoculture.[11] Rice paddyfields are agriculture's main contributors to greenhouse gases, which contribute to climate change, mainly because when flooded, as they often are on a regular cycle, they support methanogenic bacteria; overall, paddyfields contribute around 10% of the global greenhouse effect. Rice-fish systems may be able to contribute to global-scale reduction of methane emissions.[9]

Applications

Developing countries

In the 2010s, rice-fish systems were exported to less developed countries with the FAO/China Trust fund.[12] About 80 Chinese rice-fish experts were sent to underdeveloped countries in diverse regions of the world such as certain African countries, other parts of Asia and in the South Pacific to implement the rice-fish systems and their benefits as well as share their agriculture knowledge.[12] For example, the China-Nigeria South-South Cooperation programme integrated over of rice-fish fields in Nigeria, which has allowed for the production of rice and tilapia to almost double.[12]

Climate resilience

Climate change threatens global food production as it creates numerous changes to regional weather, such as higher temperatures, heavy rainfall, and storms. These changes may cause outbreaks of pests with, for example, an increase in the number of plant hoppers and stem borers.[13] Rice-fish systems offer the potential for benefit in future climates because they have higher reliability and stability than rice monoculture in the face of changing weather patterns.[13] The diversified agroecosystem is likely to be more resilient to climate change, making better use of resources and supporting a range of ecosystem services.[14]

Alternatives

See main article: Rice polyculture.

Rice-fish systems are the most common type of integrated rice-field polyculture. However, some 19 other models exist, including rice-duck, rice-crayfish, rice-crab and rice-turtle.[2] From the 1980s on, the diversity of Chinese rice polycultures developed rapidly, involving new species such as the Chinese mitten crab, the red swamp crayfish, and softshell turtles.[2]

Sources

Notes and References

  1. Book: Renkui . C. . Dashu . N. . Jianguo . W. . 1995 . Rice-fish culture in China: the past, present, and future . Mackay . Kenneth T. . Rice-Fish Culture in China . . Ottawa, Canada . 0889367760 . 12 October 2023 .
  2. Review of rice–fish-farming systems in China — One of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS) . 10.1016/j.aquaculture.2006.05.059 . 2006 . Lu . Jianbo . Li . Xia . Aquaculture . 260 . 1–4 . 106–113 . 2006Aquac.260..106L .
  3. 10.1073/pnas.1111043108 . Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system . 2011 . Xie . Jian . Hu . Liangliang . Tang . Jianjun . Wu . Xue . Li . Nana . Yuan . Yongge . Yang . Haishui . Zhang . Jiaen . Luo . Shiming . Chen . Xin . Proceedings of the National Academy of Sciences . 108 . 50 . E1381-7 . 22084110 . 3250190 . free .
  4. 10.3126/on.v3i1.328 . Revisiting Underlying Ecological Principles of Rice-Fish Integrated Farming for Environmental, Economical and Social benefits . 1970 . Gurung . T.B. . Wagle . S.K. . Our Nature . 3 . 1–12 . free .
  5. Ecological mechanism and diversity in rice based integrated farming system . 10.1016/j.ecolind.2018.04.025 . 2018 . Nayak . P.K. . Nayak . A.K. . Panda . B.B. . Lal . B. . Gautam . P. . Poonam . A. . Shahid . M. . Tripathi . R. . Kumar . U. . Mohapatra . S.D. . Jambhulkar . N.N. . Ecological Indicators . 91 . 359–375 . 90610992 .
  6. Web site: Rice-fish systems . IRRI Rice Knowledge Bank . 25 March 2024 .
  7. Book: 10.1007/978-4-431-55330-4_11 . Column: Rice-Fish Culture: The Contemporary Significance of a Traditional Practice . Social-Ecological Restoration in Paddy-Dominated Landscapes . Ecological Research Monographs . 2014 . Koseki . Yusuke . 165–172 . 978-4-431-55329-8 .
  8. Ning . Kang . Ji . Lei . Zhang . Lu . Zhu . Xue . Wei . Huimin . Han . Maozhen . Wang . Zhi . 2022 . Is rice-crayfish co-culture a better aquaculture model: From the perspective of antibiotic resistome profiles . Environmental Pollution . en . 292 . 118450 . 10.1016/j.envpol.2021.118450.
  9. Lansing . J. Stephen . Kremer . James N. . Rice, fish, and the planet . Proceedings of the National Academy of Sciences . 108 . 50 . 2011 . 19841-19842 . 10.1073/pnas.1117707109. 3250166 .
  10. Zhang . Kai . Peng . Hui-Hui . Xia . Yun . Gong . Wang-Bao . Li . Zhi-Fei . Yu . Er-Meng . Tian . Jing-Jing . Wang . Guang-Jun . Xie . Jun . Evaluating ecological mechanisms and optimization strategy of rice–fish co–culture system by ecosystem approach . Aquaculture . 560 . 2022 . 738561 .
  11. 1 April 2020 . The Fishy Fix to a Methane-Spewing Crop . . 2023-08-11 . Velasquez-Manoff . Moises .
  12. . United Nations . Scaling Up Rice-Fish Systems . CA3625EN/1/03.19 . 2019 . 12 October 2023.
  13. Khumairoh . Uma . Lantinga . Egbert A. . Schulte . Rogier P. O. . Suprayogo . Didik . Groot . Jeroen C. J.. Complex rice systems to improve rice yield and yield stability in the face of variable weather conditions . 2018 . Scientific Reports . 8 . 1 . 14746 . 30283100 . 6170462 . 2018NatSR...814746K . 10.1038/s41598-018-32915-z .
  14. Book: Goswami, Suraj . Reddy . B. Venkateshwar . Yadav . Simran . Adhruj . Avantika . Dash . Umakanta . Rathore . Arvind . Agroforestry to Combat Global Challenges . Rice–Fish-Based Agroforestry System: A Climate Smart Way to Reconcile Sustainable Livelihood Options . Springer Nature Singapore . Singapore . 36 . 2024 . 978-981-99-7281-4 . 10.1007/978-981-99-7282-1_26 . 551–568.