Radioglaciology Explained

Radioglaciology is the study of glaciers, ice sheets, ice caps and icy moons using ice penetrating radar. It employs a geophysical method similar to ground-penetrating radar and typically operates at frequencies in the MF, HF, VHF and UHF portions of the radio spectrum.[1] [2] [3] [4] This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)".

Glaciers are particularly well suited to investigation by radar because the conductivity, imaginary part of the permittivity, and the dielectric absorption of ice are small at radio frequencies resulting in low loss tangent, skin depth, and attenuation values. This allows echoes from the base of the ice sheet to be detected through ice thicknesses greater than 4 km.[5] [6] The subsurface observation of ice masses using radio waves has been an integral and evolving geophysical technique in glaciology for over half a century.[7] [8] [9] [10] [11] [12] [13] [14] Its most widespread uses have been the measurement of ice thickness, subglacial topography, and ice sheet stratigraphy.[15] It has also been used to observe the subglacial and conditions of ice sheets and glaciers, including hydrology, thermal state, accumulation, flow history, ice fabric, and bed geology. In planetary science, ice penetrating radar has also been used to explore the subsurface of the Polar Ice Caps on Mars and comets.[16] [17] [18] Missions are planned to explore the icy moons of Jupiter.[19] [20]

Measurements and applications

Radioglaciology uses nadir facing radars to probe the subsurface of glaciers, ice sheets, ice caps, and icy moons and to detect reflected and scattered energy from within and beneath the ice. This geometry tends to emphasize coherent and specular reflected energy resulting in distinct forms of the radar equation.[21] [22] Collected radar data typically undergoes signal processing ranging from stacking (or pre-summing) to migration to Synthetic Aperture Radar (SAR) focusing in 1, 2, or 3 dimensions.[23] [24] [25] This data is collected using ice penetrating radar systems which range from commercial (or bespoke) ground penetrating radar (GPR) systems[26] [27] to coherent, chirped airborne sounders [28] [29] [30] to swath-imaging,[31] multi-frequency,[32] or polarimetric[33] implementations of such systems. Additionally, stationary, phase-sensitive, and Frequency Modulated Continuous Wave (FMCW) radars [34] [35] [36] have been used to observe snow,[37] ice shelf melt rates,[38] englacial hydrology,[39] ice sheet structure,[40] and vertical ice flow.[41] [42] Interferometric analysis of airborne systems have also been demonstrated to measure vertical ice flow.[43] Additionally, radioglaciological instruments have been developed to operate on autonomous platforms,[44] on in-situ probes,[45] in low-cost deployments,[46] using Software Defined Radios,[47] and exploiting ambient radio signals for passive sounding.[48] [49]

The most common scientific application for radioglaciological observations is measuring ice thickness and bed topography. This includes interpolated "bed maps",[6] [50] [51] [52] widely used in ice sheet modeling and sea level rise projections, studies exploring specific ice-sheet regions,[53] [54] [55] [56] [57] and observations of glacier beds.[58] [59] [60] [61] The strength and character of radar echoes from the bed of the ice sheet are also used to investigate the reflectivity[62] [27] of the bed, the attenuation[63] [64] [65] of radar in the ice, and the morphology of the bed.[66] [67] [68] In addition bed echoes, radar returns from englacial layers[69] are used in studies of the radio stratigraphy of ice sheets[70] [71] [72] [73] [74] including investigations of ice accumulation,[75] [76] [77] [78] [79] flow,[80] [81] [82] [83] and fabric[84] [85] as well as absence or disturbances of that stratigraphy.[86] [87] [88] Radioglaciology data has also been used extensively to study subglacial lakes[89] [90] [91] [92] [93] [94] and glacial hydrology[95] including englacial water,[96] [97] [98] firn aquifers,[99] and their temporal evolution.[100] [39] [101] Ice penetrating radar data has also been used to investigate the subsurface of ice shelves including their grounding zones,[102] [103] melt rates,[104] [105] brine distribution,[106] and basal channels.[107]

Planetary exploration

There are currently two ice-penetrating radars orbiting Mars: MARSIS and SHARAD.[108] [109] [110] [111] [112] [113] [114] [115] [116] [117] An ice penetrating radar was also part of the ROSETTA mission to comet 67P/Churyumov–Gerasimenko.[17] Ice penetrating radars are also included in the payloads of two planned missions to the icy moons of Jupiter: JUICE and Europa Clipper.[118] [119] [120] [121] [122] [123]

IGS symposia

The International Glaciological Society (IGS) holds a periodic series of symposia focused on radioglaciology. In 2008, the "Symposium on Radioglaciology and its Applications" was hosted at the Technical University of Madrid.  In 2013, the "Symposium on Radioglaciology" was hosted at the University of Kansas. In 2019, the "Symposium of Five Decades of Radioglaciology" was hosted at Stanford University.

Further reading

The following books and papers cover important topics in radioglaciology

Research institutions

Research and education in radioglaciology is undertaken at universities and research institutes around the world.  These groups found in institutions and departments that span physical geography, geophysics, earth science, planetary science, electrical engineering, and related disciplines.

Notes and References

  1. Schroeder. Dustin M.. Bingham. Robert G.. Blankenship. Donald D.. Christianson. Knut. Eisen. Olaf. Flowers. Gwenn E.. Karlsson. Nanna B.. Koutnik. Michelle R.. Paden. John D.. Siegert. Martin J.. April 2020. Five decades of radioglaciology. Annals of Glaciology. en. 61. 81. 1–13. 10.1017/aog.2020.11. 2020AnGla..61....1S. 0260-3055. free.
  2. Kulessa. B.. Booth. A. D.. Hobbs. A.. Hubbard. A. L.. 2008-12-18. Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls. Geophysical Research Letters. en. 35. 24. L24502. 10.1029/2008GL035855. 2008GeoRL..3524502K. 0094-8276. free. 2160/7032. free.
  3. Book: Bogorodsky. VV. Radioglaciology. Bentley. CR. Gudmandsen. PE. D. Reidel Publishing. 1985.
  4. Book: Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers. 2009-12-16. CRC Press. 978-0-429-20642-9. Pellikka. Petri. 0. en. 10.1201/b10155. 129205832 . Rees. W. Gareth.
  5. Bamber. J. L.. Griggs. J. A.. Hurkmans. R. T. W. L.. Dowdeswell. J. A.. Gogineni. S. P.. Howat. I.. Mouginot. J.. Paden. J.. Palmer. S.. Rignot. E.. Steinhage. D.. 2013-03-22. A new bed elevation dataset for Greenland. The Cryosphere. en. 7. 2. 499–510. 10.5194/tc-7-499-2013. 2013TCry....7..499B. 1994-0424. free. 1808/18762. free.
  6. Fretwell. P. . Pritchard. H. D. . Vaughan. D. G. . Bamber. J. L. . Barrand. N. E. . Bell. R. . Bianchi. C. . Bingham. R. G. . Blankenship. D. D. . Casassa. G. . Catania. G. . Callens. D. . Conway. H. . Cook. A. J. . Corr. H. F. J. . Damaske. D. . Damm. V. . Ferraccioli. F. . Forsberg. R. . Fujita. S. . Gim. Y. . Gogineni. P. . Griggs. J. A. . Hindmarsh. R. C. A. . Holmlund. P. . Holt. J. W. . Jacobel. R. W. . Jenkins. A. . Jokat. W. . Jordan. T. . King. E. C. . Kohler. J. . Krabill. W. . Riger. M. . Langley. K. A. . Leitchenkov. G. . Leuschen. C. . Luyendyk. B. P. . Matsuoka. K. . Mouginot. J. . Nitsche. F. O. . Nogi. Y. . Nost. O. A. . Popov. S. V. . Rignot. E. . Rippin. D. M. . Rivera. A. . Roberts. J. . Ross. N. . Siegert. M. J. . Smith. A. M. . Steinhage. D. . Studinger. M. . Sun. B. . Tinto. B. K.. Welch. B. C. . Wilson. D. . Young. D. A. . Xiangbin. C. . Zirizzotti. A. . 5 . Bedmap2: improved ice bed, surface and thickness datasets for Antarctica . The Cryosphere . 7 . 1 . 390 . 28 February 2013. 6 January 2014. 10.5194/tc-7-375-2013 . 2013TCry....7..375F . free .
  7. Web site: Allen. Christopher. September 26, 2008. A Brief History Of Radio – Echo Sounding Of Ice.
  8. Dowdeswell. J A. Evans. S. 2004-10-01. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Reports on Progress in Physics. 67. 10. 1821–1861. 10.1088/0034-4885/67/10/R03. 2004RPPh...67.1821D. 250845954 . 0034-4885.
  9. Book: Drewry, DJ. Antarctica: Glaciological and Geophysical Folio, Vol. 2. University of Cambridge, Scott Polar Research Institute Cambridge. 1983.
  10. Gudmandsen. P.. December 1969. Airborne Radio Echo Sounding of the Greenland Ice Sheet. The Geographical Journal. 135. 4. 548–551. 10.2307/1795099. 1795099. 1969GeogJ.135..548G .
  11. Robin. G. de Q.. 1975. Radio-Echo Sounding: Glaciological Interpretations and Applications. Journal of Glaciology. en. 15. 73. 49–64. 10.3189/S0022143000034262. 0022-1430. free.
  12. PhD. Steenson. BO. 1951. Radar Methods for the Exploration of Glaciers. California Institute of Technology.
  13. Book: Stern, W. Principles, methods and results of electrodynamic thickness measurement of glacier ice. Zeitschrift für Gletscherkunde 18, 24. 1930.
  14. Turchetti. Simone. Dean. Katrina. Naylor. Simon. Siegert. Martin. September 2008. Accidents and opportunities: a history of the radio echo-sounding of Antarctica, 1958–79. The British Journal for the History of Science. en. 41. 3. 417–444. 10.1017/S0007087408000903. 0007-0874. 1842/2975. 55339188. free.
  15. Bingham. R. G.. Siegert. M. J.. 2007-03-01. Radio-Echo Sounding Over Polar Ice Masses. Journal of Environmental & Engineering Geophysics. en. 12. 1. 47–62. 10.2113/JEEG12.1.47. 2007JEEG...12...47B . 1083-1363. 2164/11013. free.
  16. Picardi. G.. 2005-12-23. Radar Soundings of the Subsurface of Mars. Science. en. 310. 5756. 1925–1928. 10.1126/science.1122165. 16319122. 2005Sci...310.1925P. 0036-8075. free.
  17. Kofman. W.. Herique. A.. Barbin. Y.. Barriot. J.-P.. Ciarletti. V.. Clifford. S.. Edenhofer. P.. Elachi. C.. Eyraud. C.. Goutail. J.-P.. Heggy. E.. 2015-07-31. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science. en. 349. 6247. aab0639. 10.1126/science.aab0639. 26228153. 2015Sci...349b0639K. 0036-8075. free.
  18. Seu. Roberto. Phillips. Roger J.. Biccari. Daniela. Orosei. Roberto. Masdea. Arturo. Picardi. Giovanni. Safaeinili. Ali. Campbell. Bruce A.. Plaut. Jeffrey J.. Marinangeli. Lucia. Smrekar. Suzanne E.. 2007-05-18. SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research. en. 112. E5. E05S05. 10.1029/2006JE002745. 2007JGRE..112.5S05S. 0148-0227. free.
  19. Blankenship. DD. 2018. and 5 others. Reasons for Europa. 42nd COSPAR Scientific Assembly. 42.
  20. Bruzzone. L. Alberti. G. Catallo. C. Ferro. A. Kofman. W. Orosei. R. May 2011. Subsurface Radar Sounding of the Jovian Moon Ganymede. Proceedings of the IEEE. 99. 5. 837–857. 10.1109/JPROC.2011.2108990. 12738030. 0018-9219.
  21. Haynes. Mark S.. April 2020. Surface and subsurface radar equations for radar sounders. Annals of Glaciology. en. 61. 81. 135–142. 10.1017/aog.2020.16. 2020AnGla..61..135H. 0260-3055. free.
  22. Peters. M.E.. Blankenship. D.D.. Carter. S.P.. Kempf. S.D.. Young. D.A.. Holt. J.W.. September 2007. Along-Track Focusing of Airborne Radar Sounding Data From West Antarctica for Improving Basal Reflection Analysis and Layer Detection. IEEE Transactions on Geoscience and Remote Sensing. 45. 9. 2725–2736. 10.1109/TGRS.2007.897416. 2007ITGRS..45.2725P. 22808977. 0196-2892.
  23. Ferro. A.. 2019-06-18. Squinted SAR focusing for improving automatic radar sounder data analysis and enhancement. International Journal of Remote Sensing. 40. 12. 4762–4786. 10.1080/01431161.2019.1573339. 2019IJRS...40.4762F. 133653325. 0143-1161.
  24. Zhang. Qiuwang. Kandic. Ivana. Barfield. Jeffrey T.. Kutryk. Michael J.. 2013. Coculture with Late, but Not Early, Human Endothelial Progenitor Cells Up Regulates IL-1βExpression in THP-1 Monocytic Cells in a Paracrine Manner. Stem Cells International. 2013. 859643. 10.1155/2013/859643. 24385987. 3872420. 1687-966X. free.
  25. Paden. John. Akins. Torry. Dunson. David. Allen. Chris. Gogineni. Prasad. 2010. Ice-sheet bed 3-D tomography. Journal of Glaciology. en. 56. 195. 3–11. 10.3189/002214310791190811. 2010JGlac..56....3P. 0022-1430. free. 1808/18879. free.
  26. Booth. Adam D.. Clark. Roger. Murray. Tavi. June 2010. Semblance response to a ground-penetrating radar wavelet and resulting errors in velocity analysis. Near Surface Geophysics. en. 8. 3. 235–246. 10.3997/1873-0604.2010008. 2010NSGeo...8..235B .
  27. Tulaczyk. Slawek M.. Foley. Neil T.. 2020-12-08. The role of electrical conductivity in radar wave reflection from glacier beds. The Cryosphere. English. 14. 12. 4495–4506. 10.5194/tc-14-4495-2020. 2020TCry...14.4495T. 1994-0416. free.
  28. Gogineni. S.. Tammana. D.. Braaten. D.. Leuschen. C.. Akins. T.. Legarsky. J.. Kanagaratnam. P.. Stiles. J.. Allen. C.. Jezek. K.. 2001-12-27. Coherent radar ice thickness measurements over the Greenland ice sheet. Journal of Geophysical Research: Atmospheres. en. 106. D24. 33761–33772. 10.1029/2001JD900183. 2001JGR...10633761G. free. 1808/15756. free.
  29. Rodriguez-Morales. Fernando. Byers. Kyle. Crowe. Reid. Player. Kevin. Hale. Richard D.. Arnold. Emily J.. Smith. Logan. Gifford. Christopher M.. Braaten. David. Panton. Christian. Gogineni. Sivaprasad. May 2014. Advanced Multifrequency Radar Instrumentation for Polar Research. IEEE Transactions on Geoscience and Remote Sensing. 52. 5. 2824–2842. 10.1109/TGRS.2013.2266415. 2014ITGRS..52.2824R. 7287473. 0196-2892.
  30. Book: Yan. J.. Gogineni. P.. O'Neill. C.. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium . L-Band Radar Sounder for Measuing Ice Basal Conditions and Ice-Shelf Melt Rate . July 2018. https://ieeexplore.ieee.org/document/8518210. 4135–4137. 10.1109/IGARSS.2018.8518210. 978-1-5386-7150-4. 53226141.
  31. Holschuh. N.. Christianson. K.. Paden. J.. Alley. R.B.. Anandakrishnan. S.. 2020-03-01. Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology. en. 48. 3. 268–272. 10.1130/G46772.1. 2020Geo....48..268H. 213056337. 0091-7613.
  32. Carrer. Leonardo. Bruzzone. Lorenzo. December 2017. Solving for ambiguities in radar geophysical exploration of planetary bodies by mimicking bats echolocation. Nature Communications. en. 8. 1. 2248. 10.1038/s41467-017-02334-1. 2041-1723. 5740182. 29269728. 2017NatCo...8.2248C.
  33. Book: Dall. Jorgen. Corr. Hugh F. J.. Walker. Nick. Rommen. Bjorn. Lin. Chung-Chi. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium . Sounding the Antarctic ice sheet from space: A feasibility study based on airborne P-band radar data . July 2018. https://ieeexplore.ieee.org/document/8518826. Valencia. IEEE. 4142–4145. 10.1109/IGARSS.2018.8518826. 978-1-5386-7150-4. 53229440.
  34. Brennan. Paul V.. Lok. Lai Bun. Nicholls. Keith. Corr. Hugh. 2014. Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring. IET Radar, Sonar & Navigation. en. 8. 7. 776–786. 10.1049/iet-rsn.2013.0053. 1751-8792. free.
  35. Book: Lok. L. B.. Brennan. P. V.. Ash. M.. Nicholls. K. W.. 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR) . Autonomous phase-sensitive radio echo sounder for monitoring and imaging antarctic ice shelves . July 2015. https://ieeexplore.ieee.org/document/7292636. 1–4. 10.1109/IWAGPR.2015.7292636. 978-1-4799-6495-6. 23122115.
  36. Vaňková. Irena. Nicholls. Keith W.. Xie. Surui. Parizek. Byron R.. Voytenko. Denis. Holland. David M.. April 2020. Depth-dependent artifacts resulting from ApRES signal clipping. Annals of Glaciology. en. 61. 81. 108–113. 10.1017/aog.2020.56. 2020AnGla..61..108V. 0260-3055. free.
  37. Marshall. Hans-Peter. Koh. Gary. 2008-04-01. FMCW radars for snow research. Cold Regions Science and Technology. Research in Cryospheric Science and Engineering. en. 52. 2. 118–131. 10.1016/j.coldregions.2007.04.008. 2008CRST...52..118M . 0165-232X.
  38. Corr. H. F. J.. Jenkins. A.. Nicholls. K. W.. Doake. C. S. M.. April 2002. Precise measurement of changes in ice-shelf thickness by phase-sensitive radar to determine basal melt rates: ICE MELT RATES REVEALED BY RADAR. Geophysical Research Letters. en. 29. 8. 73–1–74-4. 10.1029/2001GL014618. 127638299 .
  39. Kendrick. A. K.. Schroeder. D. M.. Chu. W.. Young. T. J.. Christoffersen. P.. Todd. J.. Doyle. S. H.. Box. J. E.. Hubbard. A.. Hubbard. B.. Brennan. P. V.. 2018-10-16. Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland. Geophysical Research Letters. en. 45. 19. 10,474. 10.1029/2018GL079787. 2018GeoRL..4510474K. 0094-8276. free. 10037/13937. free.
  40. Young. Tun Jan. Schroeder. Dustin M.. Christoffersen. Poul. Lok. Lai Bun. Nicholls. Keith W.. Brennan. Paul V.. Doyle. Samuel H.. Hubbard. Bryn. Hubbard. Alun. August 2018. Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar. Journal of Glaciology. en. 64. 246. 649–660. 10.1017/jog.2018.54. 2018JGlac..64..649Y. 0022-1430. free.
  41. Gillet-Chaulet. F.. Hindmarsh . R.C.A. . Corr . H.F.J. . King . E.C. . Jenkins . A.. In-situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar. 2011 . . 38 . 24. n/a. 10.1029/2011GL049843. 2011GeoRL..3824503G. free.
  42. Kingslake. Jonathan. Hindmarsh. Richard C. A.. Aðalgeirsdóttir. Guðfinna. Conway. Howard. Corr. Hugh F. J.. Gillet-Chaulet. Fabien. Martín. Carlos. King. Edward C.. Mulvaney. Robert. Pritchard. Hamish D.. 2014. Full-depth englacial vertical ice sheet velocities measured using phase-sensitive radar. Journal of Geophysical Research: Earth Surface. en. 119. 12. 2604–2618. 10.1002/2014JF003275. 2014JGRF..119.2604K. 2169-9011. free.
  43. Castelletti. D.. Schroeder. D. M.. Jordan. T. M.. Young. D.. 2020. Permanent Scatterers in Repeat-Pass Airborne VHF Radar Sounder for Layer-Velocity Estimation. IEEE Geoscience and Remote Sensing Letters. 18. 10. 1766–1770. 10.1109/LGRS.2020.3007514. 1558-0571. free. 1983/f3fa4214-5e2f-4bc4-9591-adb549db9cd4. free.
  44. Arcone. Steven A.. Lever. James H.. Ray. Laura E.. Walker. Benjamin S.. Hamilton. Gordon. Kaluzienski. Lynn. 2016-01-01. Ground-penetrating radar profiles of the McMurdo Shear Zone, Antarctica, acquired with an unmanned rover: Interpretation of crevasses, fractures, and folds within firn and marine ice. Geophysics. en. 81. 1. WA21–WA34. 10.1190/geo2015-0132.1. 2016Geop...81A..21A. 0016-8033.
  45. Bagshaw. E. A.. Lishman. B.. Wadham. J. L.. Bowden. J. A.. Burrow. S. G.. Clare. L. R.. Chandler. D.. 2014. Novel wireless sensors for in situ measurement of sub-ice hydrologic systems. Annals of Glaciology. en. 55. 65. 41–50. 10.3189/2014AoG65A007. 2014AnGla..55...41B. 0260-3055. free.
  46. Mingo. Laurent. Flowers. Gwenn E.. Crawford. Anna J.. Mueller. Derek R.. Bigelow. David G.. April 2020. A stationary impulse-radar system for autonomous deployment in cold and temperate environments. Annals of Glaciology. en. 61. 81. 99–107. 10.1017/aog.2020.2. 2020AnGla..61...99M. 0260-3055. free. 10023/19604. free.
  47. Liu. Peng. Mendoza. Jesus. Hu. Hanxiong. Burkett. Peter G.. Urbina. Julio V.. Anandakrishnan. Sridhar. Bilen. Sven G.. March 2019. Software-Defined Radar Systems for Polar Ice-Sheet Research. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12. 3. 803–820. 10.1109/JSTARS.2019.2895616. 2019IJSTA..12..803L. 1939-1404. free.
  48. Peters. Sean T.. Schroeder. Dustin M.. Castelletti. Davide. Haynes. Mark. Romero-Wolf. Andrew. December 2018. In Situ Demonstration of a Passive Radio Sounding Approach Using the Sun for Echo Detection. IEEE Transactions on Geoscience and Remote Sensing. 56. 12. 7338–7349. 10.1109/TGRS.2018.2850662. 2018ITGRS..56.7338P. 0196-2892. free.
  49. Romero-Wolf. Andrew. Vance. Steve. Maiwald. Frank. Heggy. Essam. Ries. Paul. Liewer. Kurt. 2015-03-01. A passive probe for subsurface oceans and liquid water in Jupiter's icy moons. Icarus. en. 248. 463–477. 10.1016/j.icarus.2014.10.043. 0019-1035. 1404.1876. 2015Icar..248..463R. 119234268.
  50. Bamber. J. L.. Griggs. J. A.. Hurkmans. R. T. W. L.. Dowdeswell. J. A.. Gogineni. S. P.. Howat. I.. Mouginot. J.. Paden. J.. Palmer. S.. Rignot. E.. Steinhage. D.. 2013-03-22. A new bed elevation dataset for Greenland. The Cryosphere. English. 7. 2. 499–510. 10.5194/tc-7-499-2013. 2013TCry....7..499B. 1994-0416. free. 1808/18762. free.
  51. MacKie. E. J.. Schroeder. D. M.. Caers. J.. Siegfried. M. R.. Scheidt. C.. 2020. Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes. Journal of Geophysical Research: Earth Surface. en. 125. 3. e2019JF005420. 10.1029/2019JF005420. 2020JGRF..12505420M. 2169-9011. free.
  52. Morlighem. M.. Rignot. E.. Seroussi. H.. Larour. E.. Dhia. H. Ben. Aubry. D.. 2011. A mass conservation approach for mapping glacier ice thickness. Geophysical Research Letters. en. 38. 19. n/a. 10.1029/2011GL048659. 2011GeoRL..3819503M. 1944-8007. free.
  53. Bo. Sun. Siegert. Martin J.. Mudd. Simon M.. Sugden. David. Fujita. Shuji. Xiangbin. Cui. Yunyun. Jiang. Xueyuan. Tang. Yuansheng. Li. June 2009. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature. en. 459. 7247. 690–693. 10.1038/nature08024. 19494912. 2009Natur.459..690B. 4381263. 1476-4687.
  54. King. Edward C.. April 2020. The precision of radar-derived subglacial bed topography: a case study from Pine Island Glacier, Antarctica. Annals of Glaciology. en. 61. 81. 154–161. 10.1017/aog.2020.33. 2020AnGla..61..154K. 0260-3055. free.
  55. Ross. Neil. Bingham. Robert G.. Corr. Hugh F. J.. Ferraccioli. Fausto. Jordan. Tom A.. Le Brocq. Anne. Rippin. David M.. Young. Duncan. Blankenship. Donald D.. Siegert. Martin J.. June 2012. Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica. Nature Geoscience. en. 5. 6. 393–396. 10.1038/ngeo1468. 2012NatGe...5..393R. 1752-0894.
  56. Vaughan. David G.. Corr. Hugh F. J.. Ferraccioli. Fausto. Frearson. Nicholas. O'Hare. Aidan. Mach. Dieter. Holt. John W.. Blankenship. Donald D.. Morse. David L.. Young. Duncan A.. 2006. New boundary conditions for the West Antarctic ice sheet: Subglacial topography beneath Pine Island Glacier. Geophysical Research Letters. en. 33. 9. L09501. 10.1029/2005GL025588. 2006GeoRL..33.9501V. 128406976 . 1944-8007.
  57. Young. Duncan A.. Wright. Andrew P.. Roberts. Jason L.. Warner. Roland C.. Young. Neal W.. Greenbaum. Jamin S.. Schroeder. Dustin M.. Holt. John W.. Sugden. David E.. Blankenship. Donald D.. van Ommen. Tas D.. June 2011. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature. en. 474. 7349. 72–75. 10.1038/nature10114. 21637255. 2011Natur.474...72Y. 4425075. 1476-4687.
  58. Clarke. G. K. C.. Cross. G. M.. Benson. C. S.. 1987. Airborne UHF Radar Measurements of Caldera Geometry and Volcanic History, Mount Wrangell, Alaska, U.S.A.. Annals of Glaciology. en. 9. 236–237. 10.3189/S0260305500000707. 1987AnGla...9R.236C. 0260-3055. free.
  59. Flowers. Gwenn E.. Clarke. Garry K. C.. 1999. Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry. Journal of Glaciology. en. 45. 149. 165–174. 10.3189/S0022143000003142. 0022-1430. free.
  60. Maurer. Hansruedi. Hauck. Christian. 2007. Geophysical imaging of alpine rock glaciers. Journal of Glaciology. en. 53. 180. 110–120. 10.3189/172756507781833893. 2007JGlac..53..110M. 0022-1430. free.
  61. Zamora. Rodrigo. Ulloa. David. Garcia. Gonzalo. Mella. Ronald. Uribe. José. Wendt. Jens. Rivera. Andrés. Gacitúa. Guisella. Casassa. Gino. 2009. Airborne radar sounder for temperate ice: initial results from Patagonia. Journal of Glaciology. en. 55. 191. 507–512. 10.3189/002214309788816641. 2009JGlac..55..507Z. 0022-1430. free.
  62. Jacobel. Robert W.. Welch. Brian C.. Osterhouse. David. Pettersson. Rickard. MacGregor. Joseph A.. 2009. Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica. Annals of Glaciology. en. 50. 51. 10–16. 10.3189/172756409789097504. 2009AnGla..50...10J. 0260-3055. free.
  63. Matsuoka. Kenichi. 2011-03-16. Pitfalls in radar diagnosis of ice-sheet bed conditions: Lessons from englacial attenuation models: RADAR DIAGNOSIS OF ICE-SHEET BEDS. Geophysical Research Letters. en. 38. 5. n/a. 10.1029/2010GL046205. free.
  64. Pettinelli. Elena. Cosciotti. Barbara. Di Paolo. Federico. Lauro. Sebastian Emanuel. Mattei. Elisabetta. Orosei. Roberto. Vannaroni. Giuliano. September 2015. Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review: JOVIAN ICY MOONS DIELECTRIC PROPERTIES. Reviews of Geophysics. en. 53. 3. 593–641. 10.1002/2014RG000463. 11590/283398 . 128925940 . free.
  65. Stillman. David E.. MacGregor. Joseph A.. Grimm. Robert E.. March 2013. The role of acids in electrical conduction through ice: CONDUCTION OF ACIDS IN ICE. Journal of Geophysical Research: Earth Surface. en. 118. 1. 1–16. 10.1029/2012JF002603. free.
  66. Muto. Atsuhiro. Alley. Richard B.. Parizek. Byron R.. Anandakrishnan. Sridhar. December 2019. Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica. Annals of Glaciology. en. 60. 80. 82–90. 10.1017/aog.2019.32. 2019AnGla..60...82M. 0260-3055. free.
  67. Rippin. D.M.. Bingham. R.G.. Jordan. T.A.. Wright. A.P.. Ross. N.. Corr. H.F.J.. Ferraccioli. F.. Le Brocq. A.M.. Rose. K.C.. Siegert. M.J.. June 2014. Basal roughness of the Institute and Möller Ice Streams, West Antarctica: Process determination and landscape interpretation. Geomorphology. en. 214. 139–147. 10.1016/j.geomorph.2014.01.021. 2014Geomo.214..139R. free. 20.500.11820/8da22cbd-e80b-4989-bd2c-477ae6a8463c. free.
  68. Попов. С. В.. Flow-Lines Computation and Their Use in Subglacial Geomorphology and Glacial Erosion Modeling: The Princess Elizabeth Land (East Antarctica) Case Study. 2017-04-18. 2021-03-04. Geomorphology Ras. 1. 46–54. ru. 10.15356/0435-4281-2017-1-46-54. free.
  69. Fujita. Shuji. Maeno. Hideo. Uratsuka. Seiho. Furukawa. Teruo. Mae. Shinji. Fujii. Yoshiyuki. Watanabe. Okitsugu. 1999. Nature of radio echo layering in the Antarctic Ice Sheet detected by a two-frequency experiment. Journal of Geophysical Research: Solid Earth. en. 104. B6. 13013–13024. 10.1029/1999JB900034. 1999JGR...10413013F. 2156-2202. free.
  70. Campbell. Seth. Balco. Greg. Todd. Claire. Conway. Howard. Huybers. Kathleen. Simmons. Christopher. Vermeulen. Michael. 2013. Radar-detected englacial stratigraphy in the Pensacola Mountains, Antarctica: implications for recent changes in ice flow and accumulation. Annals of Glaciology. en. 54. 63. 91–100. 10.3189/2013AoG63A371. 2013AnGla..54...91C. 0260-3055. free.
  71. NEEM community members. January 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. en. 493. 7433. 489–494. 10.1038/nature11789. 23344358. 2013Natur.493..489N. 4420908. 0028-0836.
  72. Hindmarsh. Richard C. A.. Leysinger Vieli. Gwendolyn J.-M. C.. Raymond. Mélanie J.. Gudmundsson. G. Hilmar. 2006. Draping or overriding: The effect of horizontal stress gradients on internal layer architecture in ice sheets. Journal of Geophysical Research. en. 111. F2. F02018. 10.1029/2005JF000309. 2006JGRF..111.2018H. 21709437 . 0148-0227.
  73. Karlsson. Nanna B.. Binder. Tobias. Eagles. Graeme. Helm. Veit. Pattyn. Frank. Van Liefferinge. Brice. Eisen. Olaf. 2018-07-25. Glaciological characteristics in the Dome Fuji region and new assessment for "Oldest Ice". The Cryosphere. en. 12. 7. 2413–2424. 10.5194/tc-12-2413-2018. 2018TCry...12.2413K. 1994-0424. free.
  74. MacGregor. Joseph A.. Fahnestock. Mark A.. Catania. Ginny A.. Paden. John D.. Prasad Gogineni. S.. Young. S. Keith. Rybarski. Susan C.. Mabrey. Alexandria N.. Wagman. Benjamin M.. Morlighem. Mathieu. February 2015. Radiostratigraphy and age structure of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface. en. 120. 2. 212–241. 10.1002/2014JF003215. 2169-9003. 4508962. 26213664. 2015JGRF..120..212M.
  75. Cavitte. Marie G. P.. Parrenin. Frédéric. Ritz. Catherine. Young. Duncan A.. Van Liefferinge. Brice. Blankenship. Donald D.. Frezzotti. Massimo. Roberts. Jason L.. 2018-04-17. Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr. The Cryosphere. en. 12. 4. 1401–1414. 10.5194/tc-12-1401-2018. 2018TCry...12.1401C. 1994-0424. free.
  76. Kohler. Jack. Moore. John. Kennett. Mike. Engeset. Rune. Elvehøy. Hallgeir. 1997. Using ground-penetrating radar to image previous years' summer surfaces for mass-balance measurements. Annals of Glaciology. en. 24. 355–360. 10.3189/S0260305500012441. 1997AnGla..24..355K. 0260-3055. free.
  77. Koutnik. Michelle R.. Fudge. T. J.. Conway. Howard. Waddington. Edwin D.. Neumann. Thomas A.. Cuffey. Kurt M.. Buizert. Christo. Taylor. Kendrick C.. 2016. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site. Journal of Geophysical Research: Earth Surface. en. 121. 5. 907–924. 10.1002/2015JF003668. 2016JGRF..121..907K. 2169-9011. free.
  78. Medley. B.. Joughin. I.. Smith. B. E.. Das. S. B.. Steig. E. J.. Conway. H.. Gogineni. S.. Lewis. C.. Criscitiello. A. S.. McConnell. J. R.. van den Broeke. M. R.. 2014-07-31. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. The Cryosphere. en. 8. 4. 1375–1392. 10.5194/tc-8-1375-2014. 2014TCry....8.1375M. 1994-0424. free. 1808/18740. free.
  79. Waddington. Edwin D.. Neumann. Thomas A.. Koutnik. Michelle R.. Marshall. Hans-Peter. Morse. David L.. 2007. Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets. Journal of Glaciology. en. 53. 183. 694–712. 10.3189/002214307784409351. 2007JGlac..53..694W. 0022-1430. free.
  80. Eisen. Olaf. 2008. Inference of velocity pattern from isochronous layers in firn, using an inverse method. Journal of Glaciology. en. 54. 187. 613–630. 10.3189/002214308786570818. 2008JGlac..54..613E. 0022-1430. free.
  81. Fahnestock. Mark. Abdalati. Waleed. Joughin. Ian. Brozena. John. Gogineni. Prasad. 2001-12-14. High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland. Science. en. 294. 5550. 2338–2342. 10.1126/science.1065370. 0036-8075. 11743197. 2001Sci...294.2338F. 19844250.
  82. Vieli. G. J.-M. C. Leysinger. Hindmarsh. R. C. A.. Siegert. M. J.. 2007. Three-dimensional flow influences on radar layer stratigraphy. Annals of Glaciology. en. 46. 1. 22–28. 10.3189/172756407782871729. 2007AnGla..46...22L. 0260-3055. free.
  83. Pettit. Erin C.. Waddington. Edwin D.. Harrison. William D.. Thorsteinsson. Throstur. Elsberg. Daniel. Morack. John. Zumberge. Mark A.. 2011. The crossover stress, anisotropy and the ice flow law at Siple Dome, West Antarctica. Journal of Glaciology. en. 57. 201. 39–52. 10.3189/002214311795306619. 2011JGlac..57...39P. 0022-1430. free.
  84. Jordan. Thomas M.. Schroeder. Dustin M.. Castelletti. Davide. Li. Jilu. Dall. Jorgen. November 2019. A Polarimetric Coherence Method to Determine Ice Crystal Orientation Fabric From Radar Sounding: Application to the NEEM Ice Core Region. IEEE Transactions on Geoscience and Remote Sensing. 57. 11. 8641–8657. 10.1109/TGRS.2019.2921980. 2019ITGRS..57.8641J. 198442821. 0196-2892.
  85. Martín. Carlos. Gudmundsson. G. Hilmar. Pritchard. Hamish D.. Gagliardini. Olivier. 2009-10-14. On the effects of anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides. Journal of Geophysical Research. en. 114. F4. F04001. 10.1029/2008JF001204. 2009JGRF..114.4001M. 129357387 . 0148-0227.
  86. Bell. R. E.. Ferraccioli. F.. Creyts. T. T.. Braaten. D.. Corr. H.. Das. I.. Damaske. D.. Frearson. N.. Jordan. T.. Rose. K.. Studinger. M.. 2011-03-25. Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base. Science. en. 331. 6024. 1592–1595. 10.1126/science.1200109. 21385719. 2011Sci...331.1592B. 45110037. 0036-8075.
  87. Drews. R.. Eisen. O.. Weikusat. I.. Kipfstuhl. S.. Lambrecht. A.. Steinhage. D.. Wilhelms. F.. Miller. H.. 2009-08-25. Layer disturbances and the radio-echo free zone in ice sheets. The Cryosphere. English. 3. 2. 195–203. 10.5194/tc-3-195-2009. 2009TCry....3..195D. 1994-0416. free.
  88. Winter. Kate. Woodward. John. Ross. Neil. Dunning. Stuart A.. Hein. Andrew S.. Westoby. Matthew J.. Culberg. Riley. Marrero. Shasta M.. Schroeder. Dustin M.. Sugden. David E.. Siegert. Martin J.. 2019. Radar-Detected Englacial Debris in the West Antarctic Ice Sheet. Geophysical Research Letters. en. 46. 17–18. 10454–10462. 10.1029/2019GL084012. 2019GeoRL..4610454W. 1944-8007. free. 10044/1/72891. free.
  89. Carter. Sasha P.. Blankenship. Donald D.. Peters. Matthew E.. Young. Duncan A.. Holt. John W.. Morse. David L.. March 2007. Radar-based subglacial lake classification in Antarctica: ANTARCTIC SUBGLACIAL LAKES. Geochemistry, Geophysics, Geosystems. en. 8. 3. n/a. 10.1029/2006GC001408. 134827447 . free.
  90. Ilisei. Ana-Maria. Khodadadzadeh. Mahdi. Ferro. Adamo. Bruzzone. Lorenzo. June 2019. An Automatic Method for Subglacial Lake Detection in Ice Sheet Radar Sounder Data. IEEE Transactions on Geoscience and Remote Sensing. 57. 6. 3252–3270. 10.1109/TGRS.2018.2882911. 2019ITGRS..57.3252I. 127129493. 0196-2892.
  91. Oswald. G. K. A.. Robin. G. De Q.. October 1973. Lakes Beneath the Antarctic Ice Sheet. Nature. en. 245. 5423. 251–254. 10.1038/245251a0. 1973Natur.245..251O. 4271414. 0028-0836.
  92. Palmer. Steven J.. Dowdeswell. Julian A.. Christoffersen. Poul. Young. Duncan A.. Blankenship. Donald D.. Greenbaum. Jamin S.. Benham. Toby. Bamber. Jonathan. Siegert. Martin J.. 2013. Greenland subglacial lakes detected by radar. Geophysical Research Letters. en. 40. 23. 6154–6159. 10.1002/2013GL058383. 2013GeoRL..40.6154P. 1944-8007. free. 10871/30231. free.
  93. Rutishauser. Anja. Blankenship. Donald D.. Sharp. Martin. Skidmore. Mark L.. Greenbaum. Jamin S.. Grima. Cyril. Schroeder. Dustin M.. Dowdeswell. Julian A.. Young. Duncan A.. 2018-04-01. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic. Science Advances. en. 4. 4. eaar4353. 10.1126/sciadv.aar4353. 2375-2548. 5895444. 29651462. 2018SciA....4.4353R.
  94. Siegert. Martin J.. 2018. A 60-year international history of Antarctic subglacial lake exploration. Geological Society, London, Special Publications. en. 461. 1. 7–21. 10.1144/SP461.5. 2018GSLSP.461....7S. 0305-8719. free.
  95. Wolovick. Michael J.. Bell. Robin E.. Creyts. Timothy T.. Frearson. Nicholas. 2013. Identification and control of subglacial water networks under Dome A, Antarctica. Journal of Geophysical Research: Earth Surface. en. 118. 1. 140–154. 10.1029/2012JF002555. 2013JGRF..118..140W. 31518000 . 2169-9011.
  96. Björnsson. Helgi. Gjessing. Yngvar. Hamran. Svein-Erik. Hagen. Jon Ove. LiestøL. Olav. Pálsson. Finnur. Erlingsson. Björn. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. Journal of Glaciology. en. 42. 140. 23–32. 10.3189/S0022143000030495. 0022-1430. free.
  97. Bradford. John H.. Harper. Joel T.. 2005. Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers. Geophysical Research Letters. en. 32. 8. L08502. 10.1029/2004GL021770. 2005GeoRL..32.8502B. 1944-8007. free.
  98. Murray. Tavi. Stuart. Graham W.. Fry. Matt. Gamble. Nicola H.. Crabtree. Mike D.. 2000. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. Journal of Glaciology. en. 46. 154. 389–398. 10.3189/172756500781833188. 2000JGlac..46..389M. 0022-1430. free.
  99. Forster. Richard R.. Box. Jason E.. van den Broeke. Michiel R.. Miège. Clément. Burgess. Evan W.. van Angelen. Jan H.. Lenaerts. Jan T. M.. Koenig. Lora S.. Paden. John. Lewis. Cameron. Gogineni. S. Prasad. February 2014. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience. en. 7. 2. 95–98. 10.1038/ngeo2043. 2014NatGe...7...95F. 128970359 . 1752-0908.
  100. Chu. W.. Schroeder. D. M.. Siegfried. M. R.. 2018-11-16. Retrieval of Englacial Firn Aquifer Thickness From Ice-Penetrating Radar Sounding in Southeastern Greenland. Geophysical Research Letters. en. 45. 21. 11,770–11,778. 10.1029/2018GL079751. 2018GeoRL..4511770C. free.
  101. Kulessa. B.. Booth. A. D.. Hobbs. A.. Hubbard. A. L.. 2008. Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls. Geophysical Research Letters. en. 35. 24. L24502. 10.1029/2008GL035855. 2008GeoRL..3524502K. 1944-8007. free. 2160/7032. free.
  102. Catania. G. A.. Conway. H.. Raymond. C. F.. Scambos. T. A.. 2006. Evidence for floatation or near floatation in the mouth of Kamb Ice Stream, West Antarctica, prior to stagnation. Journal of Geophysical Research: Earth Surface. en. 111. F1. F01005. 10.1029/2005JF000355. 2006JGRF..111.1005C. 2156-2202. free.
  103. Greenbaum. J. S.. Blankenship. D. D.. Young. D. A.. Richter. T. G.. Roberts. J. L.. Aitken. A. R. A.. Legresy. B.. Schroeder. D. M.. Warner. R. C.. van Ommen. T. D.. Siegert. M. J.. April 2015. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience. en. 8. 4. 294–298. 10.1038/ngeo2388. 2015NatGe...8..294G. 1752-0894.
  104. Khazendar. Ala. Rignot. Eric. Schroeder. Dustin M.. Seroussi. Helene. Schodlok. Michael P.. Scheuchl. Bernd. Mouginot. Jeremie. Sutterley. Tyler C.. Velicogna. Isabella. Isabella Velicogna. December 2016. Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nature Communications. en. 7. 1. 13243. 10.1038/ncomms13243. 2041-1723. 5093338. 27780191. 2016NatCo...713243K.
  105. Pattyn. F.. Matsuoka. K.. Callens. D.. Conway. H.. Depoorter. M.. Docquier. D.. Hubbard. B.. Samyn. D.. Tison. J. L.. 2012. Melting and refreezing beneath Roi Baudouin Ice Shelf (East Antarctica) inferred from radar, GPS, and ice core data. Journal of Geophysical Research: Earth Surface. en. 117. F4. n/a. 10.1029/2011JF002154. 2012JGRF..117.4008P. 2156-2202. free. 1983/ec278bf6-949a-441d-be03-007ac7e5611b. free.
  106. Grima. Cyril. Greenbaum. Jamin S.. Lopez Garcia. Erika J.. Soderlund. Krista M.. Rosales. Arami. Blankenship. Donald D.. Young. Duncan A.. 2016-07-16. Radar detection of the brine extent at McMurdo Ice Shelf, Antarctica, and its control by snow accumulation: BRINE EXTENT AT MCMURDO ICE SHELF. Geophysical Research Letters. en. 43. 13. 7011–7018. 10.1002/2016GL069524. free.
  107. Le Brocq. Anne M.. Ross. Neil. Griggs. Jennifer A.. Bingham. Robert G.. Corr. Hugh F. J.. Ferraccioli. Fausto. Jenkins. Adrian. Jordan. Tom A.. Payne. Antony J.. Rippin. David M.. Siegert. Martin J.. November 2013. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nature Geoscience. en. 6. 11. 945–948. 10.1038/ngeo1977. 2013NatGe...6..945L. 1752-0894.
  108. Campbell. Bruce A.. Schroeder. Dustin M.. Whitten. Jennifer L.. January 2018. Mars radar clutter and surface roughness characteristics from MARSIS data. Icarus. en. 299. 22–30. 10.1016/j.icarus.2017.07.011. 2018Icar..299...22C.
  109. Holt. John W.. Safaeinili. Ali. Plaut. Jeffrey J.. Head. James W.. Phillips. Roger J.. Seu. Roberto. Kempf. Scott D.. Choudhary. Prateek. Young. Duncan A.. Putzig. Nathaniel E.. Biccari. Daniela. 2008-11-21. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars. Science. en. 322. 5905. 1235–1238. 10.1126/science.1164246. 0036-8075. 19023078. 2008Sci...322.1235H. 36614186.
  110. Lalich. D. E.. Holt. J. W.. 2017-01-28. New Martian climate constraints from radar reflectivity within the north polar layered deposits. Geophysical Research Letters. en. 44. 2. 657–664. 10.1002/2016GL071323. 2017GeoRL..44..657L. 0094-8276. free.
  111. Lauro. Sebastian Emanuel. Pettinelli. Elena. Caprarelli. Graziella. Guallini. Luca. Rossi. Angelo Pio. Mattei. Elisabetta. Cosciotti. Barbara. Cicchetti. Andrea. Soldovieri. Francesco. Cartacci. Marco. Di Paolo. Federico. January 2021. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nature Astronomy. en. 5. 1. 63–70. 10.1038/s41550-020-1200-6. 2397-3366. 2010.00870. 2021NatAs...5...63L. 222125007.
  112. Nerozzi. Stefano. W. Holt. John. July 2018. Earliest accumulation history of the north polar layered deposits, Mars from SHARAD. Icarus. en. 308. 128–137. 10.1016/j.icarus.2017.05.027. 2018Icar..308..128N. 125836984.
  113. Orosei. R.. Lauro. S. E.. Pettinelli. E.. Cicchetti. A.. Coradini. M.. Cosciotti. B.. Paolo. F. Di. Flamini. E.. Mattei. E.. Pajola. M.. Soldovieri. F.. 2018-08-03. Radar evidence of subglacial liquid water on Mars. Science. en. 361. 6401. 490–493. 10.1126/science.aar7268. 0036-8075. 30045881. 2004.04587. 2018Sci...361..490O. free.
  114. Plaut. Jeffrey J.. Safaeinili. Ali. Holt. John W.. Phillips. Roger J.. Head. James W.. Seu. Roberto. Putzig. Nathaniel E.. Frigeri. Alessandro. 2009. Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters. en. 36. 2. n/a. 10.1029/2008GL036379. 2009GeoRL..36.2203P. 17530607 . 1944-8007. free.
  115. Putzig. Nathaniel E.. Smith. Isaac B.. Perry. Matthew R.. Foss. Frederick J.. Campbell. Bruce A.. Phillips. Roger J.. Seu. Roberto. 2018-07-01. Three-dimensional radar imaging of structures and craters in the Martian polar caps. Icarus. Mars Polar Science VI. en. 308. 138–147. 10.1016/j.icarus.2017.09.023. 0019-1035. 5937288. 29749975. 2018Icar..308..138P.
  116. Seu. Roberto. Phillips. Roger J.. Biccari. Daniela. Orosei. Roberto. Masdea. Arturo. Picardi. Giovanni. Safaeinili. Ali. Campbell. Bruce A.. Plaut. Jeffrey J.. Marinangeli. Lucia. Smrekar. Suzanne E.. 2007. SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research: Planets. en. 112. E5. E05S05. 10.1029/2006JE002745. 2007JGRE..112.5S05S. 2156-2202. free.
  117. Smith. I. B.. Putzig. N. E.. Holt. J. W.. Phillips. R. J.. 2016-05-27. An ice age recorded in the polar deposits of Mars. Science. en. 352. 6289. 1075–1078. 10.1126/science.aad6968. 27230372. 2016Sci...352.1075S. 0036-8075. free.
  118. Bruzzone. L.. Alberti. G.. Catallo. C.. Ferro. A.. Kofman. W.. Orosei. R.. May 2011. Subsurface Radar Sounding of the Jovian Moon Ganymede. Proceedings of the IEEE. 99. 5. 837–857. 10.1109/JPROC.2011.2108990. 12738030. 1558-2256.
  119. Heggy. Essam. Scabbia. Giovanni. Bruzzone. Lorenzo. Pappalardo. Robert T.. March 2017. Radar probing of Jovian icy moons: Understanding subsurface water and structure detectability in the JUICE and Europa missions. Icarus. en. 285. 237–251. 10.1016/j.icarus.2016.11.039. 2017Icar..285..237H.
  120. McKinnon. W. 2005. Radar sounding of convecting ice shells in the presence of convection: application to Europa, Ganymede, and Callisto. Workshop on Radar Investigations of Planetary and Terrestrial Environments, Houston, TX. 53. 2005ript.work...53M.
  121. Scanlan. Kirk M.. Grima. Cyril. Steinbrügge. Gregor. Kempf. Scott D.. Young. Duncan A.. Blankenship. Donald D.. 2019-11-15. Geometric determination of ionospheric total electron content from dual frequency radar sounding measurements. Planetary and Space Science. en. 178. 104696. 10.1016/j.pss.2019.07.010. 2019P&SS..17804696S. 199677922. 0032-0633.
  122. Schmidt. B. E.. Blankenship. D. D.. Patterson. G. W.. Schenk. P. M.. November 2011. Active formation of 'chaos terrain' over shallow subsurface water on Europa. Nature. en. 479. 7374. 502–505. 10.1038/nature10608. 22089135. 2011Natur.479..502S. 4405195. 0028-0836.
  123. Steinbrügge. G.. Schroeder. D. M.. Haynes. M. S.. Hussmann. H.. Grima. C.. Blankenship. D. D.. 2018-01-15. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data. Earth and Planetary Science Letters. en. 482. 334–341. 10.1016/j.epsl.2017.11.028. 2018E&PSL.482..334S. 0012-821X.