Qutrit Explained

A qutrit (or quantum trit) is a unit of quantum information that is realized by a 3-level quantum system, that may be in a superposition of three mutually orthogonal quantum states.[1]

The qutrit is analogous to the classical radix-3 trit, just as the qubit, a quantum system described by a superposition of two orthogonal states, is analogous to the classical radix-2 bit.

There is ongoing work to develop quantum computers using qutrits[2] [3] [4] and qudits in general.[5] [6] [7]

Representation

A qutrit has three orthonormal basis states or vectors, often denoted

|0\rangle

,

|1\rangle

, and

|2\rangle

in Dirac or bra–ket notation.These are used to describe the qutrit as a superposition state vector in the form of a linear combination of the three orthonormal basis states:

|\psi\rangle=\alpha|0\rangle+\beta|1\rangle+\gamma|2\rangle

,where the coefficients are complex probability amplitudes, such that the sum of their squares is unity (normalization):

|\alpha|2+|\beta|2+|\gamma|2=1

The qubit's orthonormal basis states

\{|0\rangle,|1\rangle\}

span the two-dimensional complex Hilbert space

H2

, corresponding to spin-up and spin-down of a spin-1/2 particle. Qutrits require a Hilbert space of higher dimension, namely the three-dimensional

H3

spanned by the qutrit's basis

\{|0\rangle,|1\rangle,|2\rangle\}

,[8] which can be realized by a three-level quantum system.

An n-qutrit register can represent 3n different states simultaneously, i.e., a superposition state vector in 3n-dimensional complex Hilbert space.[9]

Qutrits have several peculiar features when used for storing quantum information. For example, they are more robust to decoherence under certain environmental interactions.[10] In reality, manipulating qutrits directly might be tricky, and one way to do that is by using an entanglement with a qubit.[11]

Qutrit quantum gates

The quantum logic gates operating on single qutrits are

3 x 3

unitary matrices and gates that act on registers of

n

qutrits are

3n x 3n

unitary matrices (the elements of the unitary groups U(3) and U(3n) respectively).[12]

The rotation operator gates for SU(3) are

\operatorname{Rot}(\Theta1,\Theta2,...,\Theta8)=\exp\left(

8
-i\sum
a=1

\Thetaa

λa
2

\right)

, where

λa

is the ath Gell-Mann matrix, and

\Thetaa

is a real value. The Lie algebra of the matrix exponential is provided here. The same rotation operators are used for gluon interactions, where the three basis states are the three colors of the strong interaction.[13] [14]

The global phase shift gate for the qutrit is

\operatorname{Ph}(\delta)=\begin{bmatrix}ei\delta&0&0\ 0&ei\delta&0\ 0&0&ei\delta\end{bmatrix}=\exp\left(i\deltaI\right)=ei\deltaI

where the phase factor

ei\delta

is called the global phase.

This phase gate performs the mapping

|\Psi\rangle\mapstoei\delta|\Psi\rangle

and together with the 8 rotation operators is capable of expressing any single-qutrit gate in U(3), as a series circuit of at most 9 gates.

See also

External links

Notes and References

  1. Nisbet-Jones. Peter B. R.. Dilley. Jerome. Holleczek. Annemarie. Barter. Oliver. Kuhn. Axel. 2013. Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New Journal of Physics. en. 15. 5. 053007. 10.1088/1367-2630/15/5/053007. 1367-2630. 1203.5614. 2013NJPh...15e3007N. 110606655 .
  2. Yurtalan . M. A. . Shi . J. . Kononenko . M. . Lupascu . A. . Ashhab . S. . 2020-10-27 . Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit . Physical Review Letters . 125 . 18 . 180504 . 10.1103/PhysRevLett.125.180504. 33196217 . 2003.04879 . 2020PhRvL.125r0504Y . 128064435 .
  3. Morvan . A. . Ramasesh . V. V. . Blok . M. S. . Kreikebaum . J. M. . O’Brien . K. . Chen . L. . Mitchell . B. K. . Naik . R. K. . Santiago . D. I. . Siddiqi . I. . 2021-05-27 . Qutrit Randomized Benchmarking . Physical Review Letters . 126 . 21 . 210504 . 10.1103/PhysRevLett.126.210504. 34114846 . 2008.09134 . 2021PhRvL.126u0504M . 1721.1/143809 . 221246177 .
  4. Goss . Noah . Morvan . Alexis . Marinelli . Brian . Mitchell . Bradley K. . Nguyen . Long B. . Naik . Ravi K. . Chen . Larry . Jünger . Christian . Kreikebaum . John Mark . Santiago . David I. . Wallman . Joel J. . Siddiqi . Irfan . 2022-12-05 . High-fidelity qutrit entangling gates for superconducting circuits . Nature Communications . en . 13 . 1 . 7481 . 10.1038/s41467-022-34851-z . 2041-1723 . 9722686 . 36470858. 2206.07216 . 2022NatCo..13.7481G .
  5. Web site: Qudits: The Real Future of Quantum Computing? . 28 June 2017 . . 2021-05-24.
  6. Fischer . Laurin E. . Chiesa . Alessandro . Tacchino . Francesco . Egger . Daniel J. . Carretta . Stefano . Tavernelli . Ivano . 2023-08-28 . Universal Qudit Gate Synthesis for Transmons . PRX Quantum . 4 . 3 . 030327 . 10.1103/PRXQuantum.4.030327. 2212.04496 . 2023PRXQ....4c0327F . 254408561 .
  7. Nguyen . Long B. . Goss . Noah . Siva . Karthik . Kim . Yosep . Younis . Ed . Qing . Bingcheng . Hashim . Akel . Santiago . David I. . Siddiqi . Irfan . Empowering high-dimensional quantum computing by traversing the dual bosonic ladder . 2023-12-29 . quant-ph . 2312.17741 .
  8. Byrd. Mark. 1998. Differential geometry on SU(3) with applications to three state systems. Journal of Mathematical Physics. en. 39. 11. 6125–6136. 10.1063/1.532618. 0022-2488. math-ph/9807032. 1998JMP....39.6125B . 17645992 .
  9. Caves. Carlton M.. Milburn. Gerard J.. 2000. Qutrit entanglement. Optics Communications. 179. 1–6. 439–446. 10.1016/s0030-4018(99)00693-8. 0030-4018. quant-ph/9910001. 2000OptCo.179..439C . 27185877 .
  10. 10.1103/PhysRevB.70.014435. Parity effects in spin decoherence. Physical Review B. 70. 1. 014435. 2004. Melikidze. A.. Dobrovitski. V. V.. De Raedt. H. A.. Katsnelson. M. I.. Harmon. B. N.. 2004PhRvB..70a4435M. quant-ph/0212097. 56567962 .
  11. B. P. Lanyon,1 T. J. Weinhold, N. K. Langford, J. L. O'Brien, K. J. Resch, A. Gilchrist, and A. G. White, Manipulating Biphotonic Qutrits, Phys. Rev. Lett. 100, 060504 (2008) (link)
  12. Book: Colin P. Williams . 2011 . Explorations in Quantum Computing . . 978-1-84628-887-6 . 22–23.
  13. Book: . Introduction to Elementary Particles (2nd ed.) . . 2008 . 978-3-527-40601-2 . 283–288,366–369.
  14. Stefan Scherer . Matthias R. Schindler. A Chiral Perturbation Theory Primer. hep-ph/0505265. 31 May 2005. 1–2.