Qutrit Explained
A qutrit (or quantum trit) is a unit of quantum information that is realized by a 3-level quantum system, that may be in a superposition of three mutually orthogonal quantum states.[1]
The qutrit is analogous to the classical radix-3 trit, just as the qubit, a quantum system described by a superposition of two orthogonal states, is analogous to the classical radix-2 bit.
There is ongoing work to develop quantum computers using qutrits[2] [3] [4] and qudits in general.[5] [6] [7]
Representation
A qutrit has three orthonormal basis states or vectors, often denoted
,
, and
in Dirac or
bra–ket notation.These are used to describe the qutrit as a
superposition state vector in the form of a linear combination of the three orthonormal basis states:
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle+\gamma|2\rangle
,where the coefficients are complex
probability amplitudes, such that the sum of their squares is unity (normalization):
|\alpha|2+|\beta|2+|\gamma|2=1
The qubit's orthonormal basis states
span the two-dimensional complex
Hilbert space
, corresponding to spin-up and spin-down of a
spin-1/2 particle. Qutrits require a Hilbert space of higher dimension, namely the three-dimensional
spanned by the qutrit's basis
\{|0\rangle,|1\rangle,|2\rangle\}
,
[8] which can be realized by a three-level quantum system.
An n-qutrit register can represent 3n different states simultaneously, i.e., a superposition state vector in 3n-dimensional complex Hilbert space.[9]
Qutrits have several peculiar features when used for storing quantum information. For example, they are more robust to decoherence under certain environmental interactions.[10] In reality, manipulating qutrits directly might be tricky, and one way to do that is by using an entanglement with a qubit.[11]
Qutrit quantum gates
The quantum logic gates operating on single qutrits are
unitary matrices and gates that act on
registers of
qutrits are
unitary matrices (the elements of the
unitary groups U(3) and U(3
n) respectively).
[12] The rotation operator gates for SU(3) are
\operatorname{Rot}(\Theta1,\Theta2,...,\Theta8)=\exp\left(
\Thetaa
\right)
, where
is the
ath
Gell-Mann matrix, and
is a
real value. The
Lie algebra of the
matrix exponential is provided here. The same rotation operators are used for
gluon interactions, where the three basis states are the
three colors of the
strong interaction.
[13] [14] The global phase shift gate for the qutrit is
\operatorname{Ph}(\delta)=\begin{bmatrix}ei\delta&0&0\ 0&ei\delta&0\ 0&0&ei\delta\end{bmatrix}=\exp\left(i\deltaI\right)=ei\deltaI
where the
phase factor
is called the
global phase.
This phase gate performs the mapping
|\Psi\rangle\mapstoei\delta|\Psi\rangle
and together with the 8 rotation operators is capable of expressing any single-qutrit gate in
U(3), as a series circuit of at most 9 gates.
See also
External links
Notes and References
- Nisbet-Jones. Peter B. R.. Dilley. Jerome. Holleczek. Annemarie. Barter. Oliver. Kuhn. Axel. 2013. Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New Journal of Physics. en. 15. 5. 053007. 10.1088/1367-2630/15/5/053007. 1367-2630. 1203.5614. 2013NJPh...15e3007N. 110606655 .
- Yurtalan . M. A. . Shi . J. . Kononenko . M. . Lupascu . A. . Ashhab . S. . 2020-10-27 . Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit . Physical Review Letters . 125 . 18 . 180504 . 10.1103/PhysRevLett.125.180504. 33196217 . 2003.04879 . 2020PhRvL.125r0504Y . 128064435 .
- Morvan . A. . Ramasesh . V. V. . Blok . M. S. . Kreikebaum . J. M. . O’Brien . K. . Chen . L. . Mitchell . B. K. . Naik . R. K. . Santiago . D. I. . Siddiqi . I. . 2021-05-27 . Qutrit Randomized Benchmarking . Physical Review Letters . 126 . 21 . 210504 . 10.1103/PhysRevLett.126.210504. 34114846 . 2008.09134 . 2021PhRvL.126u0504M . 1721.1/143809 . 221246177 .
- Goss . Noah . Morvan . Alexis . Marinelli . Brian . Mitchell . Bradley K. . Nguyen . Long B. . Naik . Ravi K. . Chen . Larry . Jünger . Christian . Kreikebaum . John Mark . Santiago . David I. . Wallman . Joel J. . Siddiqi . Irfan . 2022-12-05 . High-fidelity qutrit entangling gates for superconducting circuits . Nature Communications . en . 13 . 1 . 7481 . 10.1038/s41467-022-34851-z . 2041-1723 . 9722686 . 36470858. 2206.07216 . 2022NatCo..13.7481G .
- Web site: Qudits: The Real Future of Quantum Computing? . 28 June 2017 . . 2021-05-24.
- Fischer . Laurin E. . Chiesa . Alessandro . Tacchino . Francesco . Egger . Daniel J. . Carretta . Stefano . Tavernelli . Ivano . 2023-08-28 . Universal Qudit Gate Synthesis for Transmons . PRX Quantum . 4 . 3 . 030327 . 10.1103/PRXQuantum.4.030327. 2212.04496 . 2023PRXQ....4c0327F . 254408561 .
- Nguyen . Long B. . Goss . Noah . Siva . Karthik . Kim . Yosep . Younis . Ed . Qing . Bingcheng . Hashim . Akel . Santiago . David I. . Siddiqi . Irfan . Empowering high-dimensional quantum computing by traversing the dual bosonic ladder . 2023-12-29 . quant-ph . 2312.17741 .
- Byrd. Mark. 1998. Differential geometry on SU(3) with applications to three state systems. Journal of Mathematical Physics. en. 39. 11. 6125–6136. 10.1063/1.532618. 0022-2488. math-ph/9807032. 1998JMP....39.6125B . 17645992 .
- Caves. Carlton M.. Milburn. Gerard J.. 2000. Qutrit entanglement. Optics Communications. 179. 1–6. 439–446. 10.1016/s0030-4018(99)00693-8. 0030-4018. quant-ph/9910001. 2000OptCo.179..439C . 27185877 .
- 10.1103/PhysRevB.70.014435. Parity effects in spin decoherence. Physical Review B. 70. 1. 014435. 2004. Melikidze. A.. Dobrovitski. V. V.. De Raedt. H. A.. Katsnelson. M. I.. Harmon. B. N.. 2004PhRvB..70a4435M. quant-ph/0212097. 56567962 .
- B. P. Lanyon,1 T. J. Weinhold, N. K. Langford, J. L. O'Brien, K. J. Resch, A. Gilchrist, and A. G. White, Manipulating Biphotonic Qutrits, Phys. Rev. Lett. 100, 060504 (2008) (link)
- Book: Colin P. Williams . 2011 . Explorations in Quantum Computing . . 978-1-84628-887-6 . 22–23.
- Book: . Introduction to Elementary Particles (2nd ed.) . . 2008 . 978-3-527-40601-2 . 283–288,366–369.
- Stefan Scherer . Matthias R. Schindler. A Chiral Perturbation Theory Primer. hep-ph/0505265. 31 May 2005. 1–2.