Quantum metrology explained

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems,[1] [2] [3] [4] [5] [6] particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing,[7] [8] it represents an important theoretical model at the basis of quantum sensing.[9] [10]

Mathematical foundations

A basic task of quantum metrology is estimating the parameter

\theta

of the unitary dynamics

\varrho(\theta)=\exp(-iH\theta)\varrho0\exp(+iH\theta),

where

\varrho0

is the initial state of the system and

H

is the Hamiltonian of the system.

\theta

is estimated based on measurements on

\varrho(\theta).

Typically, the system is composed of many particles, and the Hamiltonian is a sum of single-particle terms

H=\sumkHk,

where

Hk

acts on the kth particle. In this case, there is no interaction between the particles, and we talk about linear interferometers.

The achievable precision is bounded from below by the quantum Cramér-Rao bound as

(\Delta\theta)2\ge

1
mF\rm[\varrho,H]

,

where

m

is the number of independent repetitions and

F\rm[\varrho,H]

is the quantum Fisher information.[1] [11]

Examples

One example of note is the use of the NOON state in a Mach–Zehnder interferometer to perform accurate phase measurements.[12] A similar effect can be produced using less exotic states such as squeezed states. In quantum illumination protocols, two-mode squeezed states are widely studied to overcome the limit of classical states represented in coherent states. In atomic ensembles, spin squeezed states can be used for phase measurements.

Applications

An important application of particular note is the detection of gravitational radiation in projects such as LIGO or the Virgo interferometer, where high-precision measurements must be made for the relative distance between two widely separated masses. However, the measurements described by quantum metrology are currently not used in this setting, being difficult to implement. Furthermore, there are other sources of noise affecting the detection of gravitational waves which must be overcome first. Nevertheless, plans may call for the use of quantum metrology in LIGO.[13]

Scaling and the effect of noise

A central question of quantum metrology is how the precision, i.e., the variance of the parameter estimation, scales with the number of particles. Classical interferometers cannot overcome the shot-noise limit. This limit is also frequently called standard quantum limit (SQL)

(\Delta\theta)2\ge\tfrac{1}{mN},

where is

N

the number of particles. Shot-noise limit is known to be asymptotically achievable using coherent states and homodyne detection.[14]

Quantum metrology can reach the Heisenberg limit given by

(\Delta\theta)2\ge\tfrac{1}{mN2}.

However, if uncorrelated local noise is present, then for large particle numbers the scaling of the precision returns to shot-noise scaling

(\Delta\theta)2\propto\tfrac{1}{N}.

[15] [16]

Relation to quantum information science

There are strong links between quantum metrology and quantum information science. It has been shown that quantum entanglement is needed to outperform classical interferometry in magnetrometry with a fully polarized ensemble of spins.[17] It has been proved that a similar relation is generally valid for any linear interferometer, independent of the details of the scheme.[18] Moreover, higher and higher levels of multipartite entanglement is needed to achieve a better and better accuracy in parameter estimation.[19] [20] Additionally, entanglement in multiple degrees of freedom of quantum systems (known as "hyperentanglement"), can be used to enhance precision, with enhancement arising from entanglement in each degree of freedom.[21]

See also

See main article: Outline of metrology and measurement.

Notes and References

  1. Braunstein . Samuel L. . Caves . Carlton M. . Statistical distance and the geometry of quantum states . Physical Review Letters . American Physical Society (APS) . 72 . 22 . 1994-05-30 . 0031-9007 . 10.1103/physrevlett.72.3439 . 10056200 . 3439–3443 . 1994PhRvL..72.3439B.
  2. Paris . Matteo G. A. . Quantum Estimation for Quantum Technology. International Journal of Quantum Information . 21 November 2011 . 07 . supp01 . 125–137 . 10.1142/S0219749909004839. 0804.2981 . 2365312 .
  3. Giovannetti . Vittorio . Lloyd . Seth . Maccone . Lorenzo . Advances in quantum metrology . Nature Photonics . 31 March 2011 . 5 . 4 . 222–229 . 10.1038/nphoton.2011.35. 1102.2318 . 2011NaPho...5..222G . 12591819 .
  4. Tóth . Géza . Apellaniz . Iagoba . Quantum metrology from a quantum information science perspective . Journal of Physics A: Mathematical and Theoretical . 24 October 2014 . 47 . 42 . 424006 . 10.1088/1751-8113/47/42/424006. 1405.4878 . 2014JPhA...47P4006T . free .
  5. Pezzè . Luca . Smerzi . Augusto . Oberthaler . Markus K. . Schmied . Roman . Treutlein . Philipp . Quantum metrology with nonclassical states of atomic ensembles . Reviews of Modern Physics . 5 September 2018 . 90 . 3 . 035005 . 10.1103/RevModPhys.90.035005. 1609.01609 . 2018RvMP...90c5005P . 119250709 .
  6. Braun . Daniel . Adesso . Gerardo . Benatti. Fabio . Floreanini. Roberto . Marzolino . Ugo . Mitchell. Morgan W. . Pirandola . Stefano. Quantum-enhanced measurements without entanglement . Reviews of Modern Physics . 5 September 2018 . 90 . 3 . 035006 . 10.1103/RevModPhys.90.035006 . 1701.05152. 2018RvMP...90c5006B . 119081121 .
  7. Book: Helstrom . C . Quantum detection and estimation theory . 1976 . Academic Press . 0123400503.
  8. Book: Holevo . Alexander S . Probabilistic and statistical aspects of quantum theory . 1982 . Scuola Normale Superiore . 978-88-7642-378-9 . [2nd English.].
  9. 10.1038/s41566-018-0301-6. Advances in photonic quantum sensing. Nature Photonics. 12. 724–733. 2018. Pirandola. S. Bardhan. B. R.. Gehring. T.. Weedbrook . C.. Lloyd. S. . 12. 1811.01969. 2018NaPho..12..724P. 53626745.
  10. Kapale . Kishor T. . Didomenico . Leo D. . Kok . Pieter . Dowling . Jonathan P. . Quantum Interferometric Sensors . The Old and New Concepts of Physics . 18 July 2005 . 2 . 3–4 . 225–240 .
  11. Braunstein . Samuel L. . Caves . Carlton M. . Milburn . G.J. . Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance . Annals of Physics . April 1996 . 247 . 1 . 135–173 . 10.1006/aphy.1996.0040. quant-ph/9507004 . 1996AnPhy.247..135B . 358923 .
  12. Kok . Pieter . Braunstein . Samuel L . Dowling . Jonathan P . Quantum lithography, entanglement and Heisenberg-limited parameter estimation . Journal of Optics B: Quantum and Semiclassical Optics . IOP Publishing . 6 . 8 . 2004-07-28 . 1464-4266 . 10.1088/1464-4266/6/8/029 . S811–S815. quant-ph/0402083 . 2004JOptB...6S.811K . 15255876 .
  13. Kimble . H. J. . Levin . Yuri . Matsko . Andrey B. . Thorne . Kip S. . Vyatchanin . Sergey P. . Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics . Physical Review D . American Physical Society (APS) . 65 . 2 . 2001-12-26 . 0556-2821 . 10.1103/physrevd.65.022002 . 022002. gr-qc/0008026 . 2001PhRvD..65b2002K . 1969.1/181491 . 15339393 .
  14. Guha. Saikatł. Erkmen. Baris. 2009-11-10. Gaussian-state quantum-illumination receivers for target detection. Physical Review A. 80. 5 . 052310. 10.1103/PhysRevA.80.052310. 0911.0950 . 2009PhRvA..80e2310G . 109058131 .
  15. Demkowicz-Dobrzański. Rafał. Kołodyński. Jan. Guţă. Mădălin. 2012-09-18. The elusive Heisenberg limit in quantum-enhanced metrology. Nature Communications. 3. 1063. 10.1038/ncomms2067. 22990859. 3658100. 1201.3940. 2012NatCo...3.1063D.
  16. Escher. B. M.. Filho. R. L. de Matos. Davidovich. L.. May 2011. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nature Physics. 7. 5. 406–411. 10.1038/nphys1958. 1745-2481. 1201.1693. 2011NatPh...7..406E. 12391055.
  17. Sørensen. Anders S.. 2001. Entanglement and Extreme Spin Squeezing. Physical Review Letters. 86. 20. 4431–4434. 10.1103/physrevlett.86.4431. quant-ph/0011035. 2001PhRvL..86.4431S. 11384252. 206327094.
  18. Pezzé. Luca. Smerzi. Augusto. 2009. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Physical Review Letters. 102. 10. 10.1103/physrevlett.102.100401. 0711.4840. 2009PhRvL.102j0401P. 19392092. 100401. 13095638.
  19. Hyllus. Philipp. 2012. Fisher information and multiparticle entanglement. Physical Review A. 85. 2. 022321. 10.1103/physreva.85.022321. 1006.4366. 2012PhRvA..85b2321H. 118652590.
  20. Tóth. Géza. 2012. Multipartite entanglement and high-precision metrology. Physical Review A. 85. 2. 022322. 10.1103/physreva.85.022322. 1006.4368. 2012PhRvA..85b2322T. 119110009.
  21. Walborn. S. P.. Pimentel. A. H.. Filho. R. L. de Matos. Davidovich. L.. January 2018. Quantum-enhanced sensing from hyperentanglement. Physical Review A. 97. 1. 010301(R). 10.1103/PhysRevA.97.010301. 1709.04513. 2018PhRvA..97a0301W. 73689445 .