Protein tag explained

Protein tags are peptide sequences genetically grafted onto a recombinant protein. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or are both C-terminus and N-terminus specific. Some tags are also inserted at sites within the protein of interest; they are known as internal tags.[1]

Affinity tags are appended to proteins so that they can be purified from their crude biological source using an affinity technique. Affinity tags include chitin binding protein (CBP), maltose binding protein (MBP), Strep-tag and glutathione-S-transferase (GST). The poly(His) tag is a widely used protein tag, which binds to matrices bearing immobilized metal ions.

Solubilization tags are used, especially for recombinant proteins expressed in species such as E. coli, to assist in the proper folding in proteins and keep them from aggregating in inclusion bodies. These tags include thioredoxin (TRX) and poly(NANP). Some affinity tags have a dual role as a solubilization agent, such as MBP and GST.

Chromatography tags are used to alter chromatographic properties of the protein to afford different resolution across a particular separation technique. Often, these consist of polyanionic amino acids, such as FLAG-tag or polyglutamate tag.[2]

Epitope tags are short peptide sequences which are chosen because high-affinity antibodies can be reliably produced in many different species. These are usually derived from viral genes, which explain their high immunoreactivity. Epitope tags include ALFA-tag, V5-tag, Myc-tag, HA-tag, Spot-tag, T7-tag and NE-tag. These tags are particularly useful for western blotting, immunofluorescence and immunoprecipitation experiments, although they also find use in antibody purification.

Fluorescence tags are used to give visual readout on a protein. Green fluorescent protein (GFP) and its variants are the most commonly used fluorescence tags.[3] More advanced applications of GFP include using it as a folding reporter (fluorescent if folded, colorless if not).

Protein tags may allow specific enzymatic modification (such as biotinylation by biotin ligase) or chemical modification (such as coupling to other proteins through SpyCatcher or reaction with FlAsH-EDT2 for fluorescence imaging). Often tags are combined, in order to connect proteins to multiple other components. However, with the addition of each tag comes the risk that the native function of the protein may be compromised by interactions with the tag. Therefore, after purification, tags are sometimes removed by specific proteolysis (e.g. by TEV protease, Thrombin, Factor Xa or Enteropeptidase) or intein splicing.

List of protein tags

(See Proteinogenic amino acid#Chemical properties for the A-Z amino-acid codes)

Peptide tags

Covalent peptide tags

Protein tags

Others

HiBiT-tagwas developed by Scientists at Promega. It is an 11-amino-acid peptide tag, and it can be fused to the N- or C-terminus or internal locations of proteins.[29] Its small size leads to a rapid knock-in of this tag with other proteins through CRISPR/Cas9 technology.[29]

Applications

References

  1. Mahmoudi Gomari . Mohammad . Saraygord-Afshari . Neda . Farsimadan . Marziye . Rostami . Neda . Aghamiri . Shahin . Farajollahi . Mohammad M. . Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry . Biotechnology Advances . December 2020 . 45 . 107653 . 10.1016/j.biotechadv.2020.107653 . 33157154 . 226276355 . en . 0734-9750.
  2. Fairhead M, Krndija D, Lowe ED, Howarth M . Plug-and-play pairing via defined divalent streptavidins . Journal of Molecular Biology . 426 . 1 . 199–214 . January 2014 . 24056174 . 4047826 . 10.1016/j.jmb.2013.09.016 .
  3. 10.1038/nrm976. Creating new fluorescent probes for cell biology. 2002. Zhang. Jin. Campbell. Robert. Ting. Alice. Tsien. Roger. Nat Rev Mol Cell Biol. 3. 12. 906–918. 12461557. 11588100.
  4. 10.1038/s41467-019-12301-7. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. 2019. Götzke. Hansjörg. Kilisch. Markus. Martínez-Carranza. Markel. Sograte-Idrissi. Shama. Rajavel. Abirami. Schlichthaerle. Thomas. Engels. Niklas. Jungmann. Ralf. Stenmark. Pål. Opazo. Felipe. Frey. Steffen. Nature Communications. 10. 1. 4403. 31562305. 6764986. 2019NatCo..10.4403G.
  5. De Genst . Erwin J. . Guilliams . Tim . Wellens . Joke . O'Day . Elizabeth M. . Waudby . Christopher A. . Meehan . Sarah . Dumoulin . Mireille . Hsu . Shang-Te Danny . Cremades . Nunilo . Verschueren . Koen H.G. . Pardon . Els . Wyns . Lode . Steyaert . Jan . Christodoulou . John . Dobson . Christopher M. . Structure and Properties of a Complex of α-Synuclein and a Single-Domain Camelid Antibody . Journal of Molecular Biology . September 2010 . 402 . 2 . 326–343 . 10.1016/j.jmb.2010.07.001. 20620148 .
  6. Web site: CaptureSelect C-tag Affinity Matrix - Thermo Fisher Scientific . www.thermofisher.com.
  7. Cooper . Merideth A. . Taris . Joseph E. . Shi . Changhua . Wood . David W. . 2018 . A Convenient Split-Intein Tag Method for the Purification of Tagless Target Proteins . Current Protocols in Protein Science . en . 91 . 1 . 5.29.1–5.29.23 . 10.1002/cpps.46 . 29516483 . 3749506 . 1934-3655.
  8. Prabhala . Sai Vivek . Gierach . Izabela . Wood . David W. . 2022 . The Evolution of Intein-Based Affinity Methods as Reflected in 30 years of Patent History . Frontiers in Molecular Biosciences . 9 . 857566 . 10.3389/fmolb.2022.857566 . 35463948 . 9033041 . 2296-889X. free .
  9. Web site: iCapTag™ Technology - Protein Capture Science . www.proteincapturescience.com.
  10. Einhauer . A. . Jungbauer . A. . 2001 . The FLAG™ peptide, a versatile fusion tag for the purification of recombinant proteins . Journal of Biochemical and Biophysical Methods . 49 . 1–3 . 455–65 . 11694294 . 10.1016/S0165-022X(01)00213-5.
  11. Prakriya . Murali. Feske . Stefan. Gwack . Yousang . Srikanth . Sonal . Rao . Anjana . Hogan . Patrick G. . 2006 . Orai1 is an essential pore subunit of the CRAC channel. Nature . 443 . 7108 . 230–3 . 16921383 . 2006Natur.443..230P . 10.1038/nature05122. 4310221.
  12. 10.1002/cbic.202100381. 1439-7633. 22. 22. 3199–3207. Brune. Karl D.. Liekniņa. Ilva. Sutov. Grigorij. Morris. Alexander R.. Jovicevic. Dejana. Kalniņš. Gints. Kazāks. Andris. Kluga. Rihards. Kastaljana. Sabine. Zajakina. Anna. Jansons. Juris. Skrastiņa. Dace. Spunde. Karīna. Cohen. Alexander A.. Bjorkman. Pamela J.. Morris. Howard R.. Suna. Edgars. Tārs. Kaspars. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. ChemBioChem . 2021-11-16. 34520613. 237515136.
  13. Ho . Philip WL. . Tse . Zero HM. . Liu . HF. . Lu . S. . Ho . Jessica WM. . Kung . Michelle HW. . Ramsden . David B. . Ho . SL. . 2013 . Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT) expression in an ELISA-based system. . PLOS ONE . 8 . 9 . e74065 . 24040167 . 10.1371/journal.pone.0074065 . 3765251. 2013PLoSO...874065H . free .
  14. Keefe . Anthony D. . Wilson . David S. . Seelig . Burckhard . Szostak . Jack W. . 2001 . One-Step Purification of Recombinant Proteins Using a Nanomolar-Affinity Streptavidin-Binding Peptide, the SBP-Tag . Protein Expression and Purification . 23 . 3 . 440–6 . 11722181 . 10.1006/prep.2001.1515.
  15. Schmidt . Thomas G.M. . Koepke . Jürgen . Frank . Ronald . Skerra . Arne . 1996 . Molecular Interaction Between the Strep-tag Affinity Peptide and its Cognate Target, Streptavidin . Journal of Molecular Biology . 255 . 5 . 753–66 . 8636976 . 10.1006/jmbi.1996.0061.
  16. Web site: Epitope Tags & Fusion Proteins – antibodies-online . www.antibodies-online.com.
  17. McNutt . Markey C. . Lagace . Thomas A. . Horton . Jay D. . 2007 . Catalytic Activity is Not Required for Secreted PCSK9 to Reduce Low Density Lipoprotein Receptors in HepG2 Cells . Journal of Biological Chemistry . 282 . 29 . 20799–803 . 17537735 . 10.1074/jbc.C700095200. free .
  18. Zakeri . Bijan . Howarth . Mark . 2010 . Spontaneous Intermolecular Amide Bond Formation between Side Chains for Irreversible Peptide Targeting . Journal of the American Chemical Society . 132 . 13 . 4526–7 . 20235501 . 10.1021/ja910795a. 2010JAChS.132.4526Z .
  19. Zakeri . Bijan . Fierer . Jacob O. . Celik . Emrah . Chittock . Emily C. . Schwarz-Linek . Ulrich . Moy . Vincent T. . Howarth . Mark . 2012 . Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin . Proceedings of the National Academy of Sciences . 109 . 12 . E690–7 . 2012PNAS..109E.690Z . 3311370 . 22366317 . 10.1073/pnas.1115485109. free .
  20. Veggiani . Gianluca . Nakamura . Tomohiko . Brenner . Michael . Gayet . Raphael . Yan . Jun . Robinson . Carol . Howarth . Mark . 2016 . Programmable polyproteams built using twin peptide superglues . Proceedings of the National Academy of Sciences . 113 . 5 . 1202–7 . 26787909 . 10.1073/pnas.1519214113. 2016PNAS..113.1202V . 4747704 . free .
  21. Buldun. Can M.. Jean. Jisoo X.. Bedford. Michael R.. Howarth. Mark. SnoopLigase Catalyzes Peptide–Peptide Locking and Enables Solid-Phase Conjugate Isolation. Journal of the American Chemical Society. 140. 8. 3008–3018. 14 February 2018. 10.1021/jacs.7b13237. 29402082. 2018JAChS.140.3008B . 207189163 .
  22. Keeble. Anthony H.. Yadav. Vikash K.. Ferla. Matteo P.. Bauer. Claudia C.. Chuntharpursat-Bon. Eulashini. Huang. Jin. Bon. Robin S.. Howarth. Mark. July 2021. DogCatcher allows loop-friendly protein-protein ligation. Cell Chemical Biology. 29. 2. 339–350.e10. 10.1016/j.chembiol.2021.07.005. 34324879. 8878318. 2451-9456. free.
  23. Tan . Lee Ling . Hoon . Shawn S. . Wong . Fong T. . Ahmed . S. Ashraf . Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly . PLOS ONE . 26 October 2016 . 11 . 10 . e0165074 . 10.1371/journal.pone.0165074. 27783674 . 5082641 . 2016PLoSO..1165074T . free .
  24. Ciulli. Bond. Craigon. Alessi. Development of BromoTag: A "Bump-and-Hole"–PROTAC System to Induce Potent, Rapid, and Selective Degradation of Tagged Target Proteins. J Med Chem. Oct 2021. 64. 20. 15477–15502. 34652918. 10.1021/acs.jmedchem.1c01532. free. 8558867.
  25. Book: https://link.springer.com/protocol/10.1007/978-1-0716-2176-9_5 . 10.1007/978-1-0716-2176-9_5 . Application of a Novel CL7/Im7 Affinity System in Purification of Complex and Pharmaceutical Proteins . Affinity Chromatography . Methods in Molecular Biology . 2022 . Chow . Louise T. . Vassylyev . Dmitry G. . 2466 . 61–82 . 35585311 . 978-1-0716-2175-2 .
  26. Bedouelle. Hugues. Duplay. Pascale. Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into the periplasmic space. Eur J Biochem. Feb 1988. 171. 3. 541–549. 3278900. 10.1111/j.1432-1033.1988.tb13823.x. free.
  27. Minde . David P . Halff . Els F . Tans . Sander . 2013 . Designing disorder: Tales of the unexpected tails . Intrinsically Disordered Proteins . 1 . 1 . 5–15 . 10.4161/idp.26790. 28516025 . 5424805 .
  28. Kriznik. Alexandre. Yéléhé-Okouma. Mélissa. Lec. Jean-Christophe. Groshenry. Guillaume. Le Cordier. Hélène. Charron. Christophe. Quinternet. Marc. Mazon. Hortense. Talfournier. François. Boschi-Muller. Sandrine. Jouzeau. Jean-Yves. Reboul. Pascal. CRDSAT Generated by pCARGHO: A New Efficient Lectin-Based Affinity Tag Method for Safe, Simple, and Low-Cost Protein Purification.. Biotechnol J. 14. 4. 1800214. Oct 2018. 30298550. 10.1002/biot.201800214. 52942568.
  29. Schwinn. Marie K.. Machleidt. Thomas. Zimmerman. Kris. Eggers. Christopher T.. Dixon. Andrew S.. Hurst. Robin. Hall. Mary P.. Encell. Lance P.. Binkowski. Brock F.. Wood. Keith V.. 2018-02-16. CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide. ACS Chemical Biology. en. 13. 2. 467–474. 10.1021/acschembio.7b00549. 28892606. 1554-8929. free.