Pseudohalogen Explained

Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms PsPs or Ps–X (where Ps is a pseudohalogen group), such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.

Common pseudohalogens and their nomenclature

Many pseudohalogens are known by specialized common names according to where they occur in a compound. Well-known ones include (the true halogen chlorine is listed for comparison):

GroupHydrogen compoundPseudohalideLigand nameIn organic compoundsFormulaStructural formula
True halogens
chloro chlorine
(dichlorane)
Hydrogen chloride
(chlorane)
chlorido-
chloro-
~ Cl
Pseudohalogens
hydrido hydrido- ~ H
cyano hydrogen cyanide,
prussic acid,
formonitrile
cyanido-
cyano-
-nitrile
-yl cyanide
~ CN
cyapho cyaphogencyaphido-
cyapho-
-yl cyaphide ~ CP
isocyano isocyanogenhydrogen isocyanide,
isohydrocyanic acid
isocyanido-
isocyano-
-isonitrile
-yl isocyanide
~ NC
hydrogen peroxide
(dioxidane)
water
(oxidane)
hydroxido-
hydroxy-
~ OH
hydrogen disulfide
(disulfane)
hydrogen sulfide
(sulfane)
sulfanido-
thiolato-
-thiol
-yl mercaptane
~ SH
selanylhydrogen diselenide
(diselane)
hydrogen selenide
(selane)
hydroselenideselanido-
selenolato-
~ SeH
tellanylhydrogen ditelluride
(ditellane)
hydrogen telluride
(tellane)
hydrotelluridetellanido-
tellurolato-
~ TeH
cyanate dicyanodioxidanecyanato- ~ OCN
isocyanate isocyanogenisocyanato- ~ NCO
fulminate fulminogenfulminato- -nitrile oxide
-yl fulminate
~ CNO
thiocyanate,
rhodanide
thiocyanato- ~ SCN
isothiocyanate isothiocyanogenisothiocyanato- ~ NCS
selenocyanate,
selenorhodanide
selenocyanogenselenocyanic acidselenocyanato- ~ SeCN
tellurocyanate,[1]
tellurorhodanide
tellurocyanogentellurocyanic acidtellurocyanatetellurocyanato- -yl tellurocyanate~ TeCN
azidogenazido-

~ NO
cobalt carbonyl tetracarbonylcobaltate
trinitromethanide nitroform,
trinitromethane
trinitromethanide trinitromethanido- -yl trinitromethanide
tricyanomethanide hexacyanoethanecyanoform,
tricyanomethane
tricyanomethanide tricyanomethanido- -yl tricyanomethanide
1,2,3,4-thiatriazol-5-thiolate bis(1,2,3,4-thiatriazol-5-yl)disulfane 1,2,3,4-thiatriazol-5-thiol[2] 1,2,3,4-thiatriazol-5-thiolate 1,2,3,4-thiatriazol-5-thiolato- -yl 1,2,3,4-thiatriazol-5-thiolate [3]
aurideAu2(Gold dimer)HAu(Gold(I) hydride)aurideaurido-Organogold chemistry~ Au

is considered to be a pseudohalogen ion due to its disproportionation reaction with alkali and the ability to form covalent bonds with hydrogen.[4]

Examples of pseudohalogen molecules

Examples of symmetrical pseudohalogen compounds (where Ps is a pseudohalogen) include cyanogen, thiocyanogen and hydrogen peroxide . Another complex symmetrical pseudohalogen compound is dicobalt octacarbonyl, . This substance can be considered as a dimer of the hypothetical cobalt tetracarbonyl, .

Examples of non-symmetrical pseudohalogen compounds (pseudohalogen halides, where Ps is a pseudohalogen and X is a halogen, or interpseudohalogens, where are two different pseudohalogens), analogous to the binary interhalogen compounds, are cyanogen halides like cyanogen chloride, cyanogen bromide, nitryl fluoride, nitrosyl chloride and chlorine azide, as well as interpseudohalogens like dinitrogen trioxide, nitric acid and cyanogen azide .

Not all combinations of interpseudohalogens and pseudohalogen halides are known to be stable (e.g. sulfanol).

Pseudohalides

Pseudohalides form univalent anions which form binary acids with hydrogen and form insoluble salts with silver such as silver cyanide (AgCN), silver cyanate (AgOCN), silver fulminate (AgCNO), silver thiocyanate (AgSCN) and silver azide .

A common complex pseudohalide is a tetracarbonylcobaltate . The acid cobalt tetracarbonyl hydride is in fact quite a strong acid, though its low solubility renders it not as strong as the true hydrogen halide.

The behavior and chemical properties of the above pseudohalides are identical to that of the true halide ions. The presence of the internal multiple bonds does not appear to affect their chemical behavior. For example, they can form strong acids of the type HX (compare hydrogen chloride HCl to hydrogen tetracarbonylcobaltate), and they can react with metals M to form compounds like MX (compare sodium chloride NaCl to sodium azide).

Nanoclusters of aluminium (often referred to as superatoms) are sometimes considered to be pseudohalides since they, too, behave chemically as halide ions, forming (analogous to triiodide) and similar compounds. This is due to the effects of metallic bonding on small scales.

References

Notes and References

  1. Web site: Tellurocyanate CNTe ChemSpider. dead . https://web.archive.org/web/20211121161246/http://www.chemspider.com/Chemical-Structure.21865273.html . 2021-11-21 .
  2. Web site: 5-Mercapto-1,2,3,4-thiatriazole .
  3. Margaret-Jane Crawford, et al. CS2N3, A Novel Pseudohalogen. J. Am. Chem. Soc. 2000, 122, 9052-9053
  4. Jansen, Martin. ChemInform Abstract: Base-Induced Disproportionation of Elemental Gold.. ChemInform. 2000-11-28. 31. 48. no. 10.1002/chin.200048020. Mudring. Anjy-Verena.