Polyethylene naphthalate explained

Polyethylene naphthalate (poly(ethylene 2,6-naphthalate) or PEN) is a polyester derived from naphthalene-2,6-dicarboxylic acid and ethylene glycol. As such it is related to poly(ethylene terephthalate), but with superior barrier properties.

Production

Two major manufacturing routes exist for polyethylene naphthalate (PEN), i.e. an ester or an acid process, named according to whether the starting monomer is a diester or a diacid derivative, respectively. In both cases for PEN, the glycol monomer is ethylene glycol. Solid-state polymerization (SSP) of the melt-produced resin pellets is the preferred process to increase the average molecular weight of PEN.[1]

Applications

Because it provides a very good oxygen barrier, it is well-suited for bottling beverages that are susceptible to oxidation, such as beer. It is also used in making high performance sailcloth.

Significant commercial markets have been developed for its application in textile and industrial fibers, films, and foamed articles, containers for carbonated beverages, water and other liquids, and thermoformed applications. It is also an emerging material for modern electronic devices.

It also has been found to show excellent scintillation properties and is expected to replace classic plastic scintillators.[2]

Benefits when compared to polyethylene terephthalate

The two condensed aromatic rings of PEN confer on it improvements in strength and modulus, chemical and hydrolytic resistance, gaseous barrier, thermal and thermo-oxidative resistance and ultraviolet (UV) light barrier resistance compared to polyethylene terephthalate (PET). PEN is intended as a PET replacement, especially when used as a substrate[3] for flexible integrated circuits.

References

  1. Lillwitz LD. 2001. Production of Dimethyl-2,6-Naphthalenedicarboxylate: Precursor to Polyethylene Naphthalate. Applied Catalysis A: General. 221. 1–2. 337–358. 10.1016/S0926-860X(01)00809-2.
  2. 3. Nakamura H, Shirakawa Y, Takahashi S, Shimizu H. 2011. Evidence of deep-blue photon emission at high efficiency by common plastic. EPL. 95. 2. 22001. 10.1209/0295-5075/95/22001. free. 2011EL.....9522001N . 2433/141973. free.
  3. Web site: The Plastic Processor. Calamia J. 2011. IEEE Spectrum. 24 Sep 2019.