Paper size explained

Paper size standards govern the size of sheets of paper used as writing paper, stationery, cards, and for some printed documents.

The ISO 216 standard, which includes the commonly used A4 size, is the international standard for paper size. It is used across the world except in North America and parts of Central and South America, where North American paper sizes such as "Letter" and "Legal" are used. The international standard for envelopes is the C series of ISO 269.

International standard paper sizes

See main article: ISO 216.

The international paper size standard is ISO 216. It is based on the German DIN 476 standard for paper sizes. Each ISO paper size is one half of the area of the next larger size in the same series. ISO paper sizes are all based on a single aspect ratio of the square root of 2, or approximately 1:1.41421. There are different series, as well as several extensions.

The following international paper sizes are included in Cascading Style Sheets (CSS): A3, A4, A5, B4, B5.[1]

A series

There are 11 sizes in the A series, designated A0–A10, all of which have an aspect ratio of

a
b

=\sqrt{2}1.41421\ldots

, where a is the long side and b is the short side.

Since A series sizes share the same aspect ratio

(\sqrt{2}),

they can be scaled to other A series sizes without being distorted, and two sheets can be reduced to fit on exactly one sheet without any cutoff or margins.

The A0 base size is defined as having an area of 1 m; given an aspect ratio of

\sqrt{2}

, the dimensions of A0 are:

\sqrt[4]2m

by
1\sqrt[4]2m
.

or, rounded to the nearest millimetre, 1189x.

A series sizes are related in that the smaller dimension of a given size is the larger dimension of the next smaller size, and folding an A series sheet in half in its larger dimension—that is, folding it in half parallel to its short edge—results in two halves that are each the size of the next smaller A series size. As such, a folded brochure of a given A-series size can be made by folding sheets of the next larger size in half, e.g. A4 sheets can be folded to make an A5 brochure. The fact that halving a sheet with an aspect ratio of

\sqrt{2}

results in two sheets that themselves both have an aspect ratio of

\sqrt{2}

is proven as follows:
a
b

=\sqrt{2},

where a is the long side and b is the short side. The aspect ratio for the new dimensions of the folded paper is:

b
a
2

=2

b
a

=2

1
\sqrt{2
} = \sqrt = \frac.

The advantages of basing a paper size upon an aspect ratio of

\sqrt{2}

were noted in 1786 by the German scientist and philosopher Georg Christoph Lichtenberg.[2] He also observed that some raw sizes already adhered to that ratio so that when a sheet is folded, the length to width ratio does not change.

Briefly after the introduction of the metric system, a handful of new paper formats equivalent to modern ones were developed in France, having been proposed by the mathematician Lazare Carnot, and published for judicial purposes in 1798 during the French Revolution.[3] These were never widely adopted, however:

Early in the 20th century, the ratio was used to specify the world format starting with 1 cm as the short edge of the smallest size. Walter Porstmann started with the largest sizes instead, assigning one an area of 1 m2 (A0) and the other a short edge of 1 m (B0). He thereby turned the forgotten French sizes (relatively few in number) into a logically-simple and comprehensive plan for a full range of paper sizes, while introducing systematic alphanumeric monikers for them. Generalized to nothing less than four series, this system was introduced as a DIN standard (DIN 476) in Germany in 1922, replacing a vast variety of other paper formats. Even today, the paper sizes are called "DIN A4" (pronounced as /de/) in everyday use in Germany and Austria.

The DIN 476 standard spread quickly to other countries. Before the outbreak of World War II, it had been adopted by the following countries in Europe:

During World War II, the standard spread to South America and was adopted by Uruguay (1942), Argentina (1943) and Brazil (1943), and afterwards spread to other countries:

By 1975, so many countries were using the German system that it was established as an ISO standard, as well as the official United Nations document format. By 1977, A4 was the standard letter format in 88 of 148 countries. Today the standard has been adopted by all countries in the world except the United States and Canada. In Mexico, Costa Rica, Colombia, Venezuela, Chile, and the Philippines, the US letter format is still in common use, despite their official adoption of the ISO standard.

The weight of an A-series sheet of a given paper weight can be calculated by knowing the ratio of its size to the A0 sheet. For example, an A4 sheet is the size of an A0 sheet, so if it is made from paper, it weighs of 80 g, which is 5 g.

B series

The B series paper sizes are less common than the A series. They have the same aspect ratio as the A series:

a
b

=\sqrt{2}=1.41421...

However, they have a different area. The area of B series sheets is in fact the geometric mean of successive A series sheets. B1 is between A0 and A1 in size, with an area of

1
\sqrt{2
} m, or about 0.707 m. As a result, B0 is 1 metre wide, and other sizes of the series are a half, a quarter, or further fractions of a metre wide: in general, every B size has exactly one side of length
1\operatorname{m
} for

n\inN

. That side is the short side for B0, B2, B4, etc., and the long side for B1, B3, B5, etc.

While less common in office use, the B series is used for a variety of applications in which one A-series size would be too small but the next A-series size is too large, or because they are convenient for a particular purpose.

The B-series is widely used in the printing industry to describe both paper sizes and printing press sizes, including digital presses. B3 paper is used to print two US letter or A4 pages side by side using imposition; four pages would be printed on B2, eight on B1, etc.

C series

The C series is defined in ISO 269, which was withdrawn in 2009 without a replacement, but is still specified in several national standards. It is primarily used for envelopes. The area of C series sheets is the geometric mean of the areas of the A and B series sheets of the same number; for instance, the area of a C4 sheet is the geometric mean of the areas of an A4 sheet and a B4 sheet. This means that C4 is slightly larger than A4, and slightly smaller than B4. The practical usage of this is that a letter written on A4 paper fits inside a C4 envelope, and both A4 paper and C4 envelope fits inside a B4 envelope.

Some envelope formats with mixed sides from adjacent sizes (and thus an approximate aspect ratio of 2:1) are also defined in national adaptations of the ISO standard, e.g. DIN C6/C5 (also known as C65) is 114 mm × 229 mm where the common side to C5 and C6 is 162 mm. This format allows an envelope holding an A-sized paper folded in three, e.g. for the C65, an A4.

Overview of ISO paper sizes

A series[5] !colspan="3"
B series[6] C series[7]
Sizeshort × long Notional areashort × long Notional areashort × long Notional area
mm in m2mm in m2mm in m2
0841 × 1189 20 = 11000 × 1414 2917 × 1297 2
1 594 × 841 1/2 = 0.5707 × 1000 2648 × 917 2
2 420 × 594 1/22 = 0.25500 × 707 2458 × 648 2
3297 × 420 1/23 = 0.125353 × 500 2324 × 458 2
4210 × 297 1/24 = 0.0625250 × 353 2229 × 324 2
5148 × 210 1/25176 × 250 2162 × 229 2
6105 × 148 1/26125 × 176 2114 × 162 2
774 × 105 1/2788 × 125 281 × 114 2
852 × 74 1/2862 × 88 257 × 81 2
937 × 52 1/2944 × 62 240 × 57 2
1026 × 37 1/21031 × 44 228 × 40 2
i

\left(\alphaAri+1\right) x \left(\alphaAri\right),

where

\alphaA=\sqrt[4]{2}m;r=\tfrac{1}{\sqrt{2}}

\left(\alphaBri+1\right) x \left(\alphaBri\right),

where

\alphaB=\sqrt{2}m;r=\tfrac{1}{\sqrt{2}}

\left(\alphaCri+1\right) x \left(\alphaCri\right),

where

\alphaC=\sqrt[8]{8}m;r=\tfrac{1}{\sqrt{2}}

The

\alpha

variables are the distinct first terms in the three geometric progressions of the same common ratio equal to the square root of two. Each of the three geometric progressions (corresponding to the three series A, B, and C) is formed by all possible paper dimensions (length and width) of the series arranged in decreasing order. This interesting arrangement of dimensions is also very useful—not only does it form a geometric progression with easy-to-remember formulae, but also each consecutive pair of values (like a sliding window of size 2) will automatically correspond to the dimensions of a standard paper format in the series.

The tolerances specified in the standard are

Related regional sizes

German original

The German standard DIN 476 was published on 18 August 1922 and is the original specification of the A, B and C sizes. In 1991, it was split into DIN 476-1 for the A and B formats and 476-2 for the C series. The former has been withdrawn in 2002 in favor of adopting the international standard as DIN EN ISO 216, but part 2 has been retained and was last updated in 2008.

The first and the second editions of DIN 476 from 1922 and 1925 also included a D series.

The smallest formats in the original specifications for each series were A13, B13, C8, and D8. Sizes A11 through A13 were no longer listed in the 1930 edition, nor were B11 through B13. C9 and C10 were added in the 1976 revision for compatibility with photography sizes: C8 closely matches 6×9 photos, and C9 and C10 closely match 7×7 and 5×5 slides, respectively.

A !!colspan=2
B
Size mm × mm inch × inch !mm × mm inch × inch
11
12
13

DIN 476 provides for formats larger than A0, denoted by a prefix factor. In particular, it lists the formats 2A0 and 4A0, which are twice and four times the size of A0 respectively.However, ISO 216:2007 notes 2A0 and 4A0 in the table of Main series of trimmed sizes (ISO A series) as well: "The rarely used sizes [2A0 and 4A0] which follow also belong to this series."

DIN 476 also used to specify slightly tighter tolerances than ISO 216:

There used to be a standard, DIN 198, that was just a table of recommended A series formats for a number of business applications. The 1976 edition of this standard introduced a size A4 and suggested it for some forms and slips.

Swedish extensions

The Swedish standard SIS 01 47 11[8] generalized the ISO system of A, B, and C formats by adding D, E, F, and G formats to it. Its D format sits between a B format and the next larger A format (just like C sits between A and the next larger B). The remaining formats fit in between all these formats, such that the sequence of formats A4, E4, C4, G4, B4, F4, D4, *H4, A3 is a geometric progression, in which the dimensions grow by a factor

\sqrt[16]{2}

from one size to the next. However, this SIS standard does not define any size between a D format and the next larger A format (called *H in the previous example).

Of these additional formats, G5 (169 × 239 mm) and E5 (155 × 220 mm) are popular in Sweden and the Netherlands for printing dissertations,[9] but the other formats have not turned out to be particularly useful in practice. They have not been adopted internationally and the Swedish standard has been withdrawn.

The Swedish and German D series basically contain the same sizes but are offset by one, i.e. DIN D4 equals SIS D5 and so on.

SIS 014711 formulas,[10] including the missing step, series *H, between D and A,
n = 0..10, r = \sqrt[16], s = \sqrt
DesignationShorter edgeLonger edge
Anr−4 × snr+4 × sn
Enr−3 × snr+5 × sn
Cnr−2 × snr+6 × sn
Gnr−1 × snr+7 × sn
Bnr 0 × snr+8 × sn
Fnr+1 × snr+9 × sn
Dnr+2 × snr+10 × sn
  • Hn
r+3 × snr+11 × sn
A(n-1)r+4 × snr+12 × sn
A !! E !!style="display:none"
C !G B F D
  • H
0 841 × 1189878 × 1242917 × 1297958 × 13541000 × 14141044 × 14771091 × 15421139 × 1610
1 595 × 841 621 × 878 648 × 917 677 × 958 707 × 1000738 × 1044771 × 1091805 × 1139
2 420 × 595 439 × 621 459 × 648 479 × 677 500 × 707 522 × 738 545 × 771 569 × 805
3 297 × 420 310 × 439 324 × 459 339 × 479 354 × 500 369 × 522 386 × 545 403 × 569
4 210 × 297 220 × 310 229 × 324 239 × 339 250 × 354 261 × 369 273 × 386 285 × 403
5 149 × 210 155 × 220 162 × 229 169 × 239 177 × 250 185 × 261 193 × 273 201 × 285
6 105 × 149 110 × 155 115 × 162 120 × 169 125 × 177 131 × 185 136 × 193 142 × 201
7 74 × 105 78 × 110 81 × 115 85 × 120 88 × 125 92 × 131 96 × 136 101 × 142
8 53 × 74 55 × 78 57 × 81 60 × 85 63 × 88 65 × 92 68 × 96 71 × 101
9 37 × 53 39 × 55 41 × 57 42 × 60 44 × 63 46 × 65 48 × 68 50 × 71
10 26 × 37 27 × 39 29 × 41 30 × 42 31 × 44 33 × 46 34 × 48 36 × 50

Japanese variation

The Japanese standard JIS P 0138 defines two main series of paper sizes. The JIS A-series is identical to the ISO A-series except that it has slightly different tolerances. The area of B-series paper is 1.5 times that of the corresponding A-paper (instead of the factor

\sqrt{2}=1.414...

for the ISO B-series), so the length ratio is approximately 1.22 times the length of the corresponding A-series paper. The aspect ratio of the paper is the same as for the A-series paper. Both A- and B-series paper are widely available in Japan, Taiwan and China, and most photocopiers are loaded with at least A4 and either one of A3, B4, and B5 paper.

Cascading Style Sheets (CSS) only supports the most popular of the Japanese sizes, JIS-B4 and JIS-B5.[1]

A popular size for books, dubbed AB, combines the shorter edges of A4 and B4. Another two with an aspect ratio approximating are 20% narrower variants of A6 and B6, respectively, the latter resulting from cutting JIS B1 into sheets (thus "B40").

There are also a number of traditional paper sizes, which are now used mostly by printers. The most common of these old series is the Shiroku-ban and the Kiku paper sizes.

inch × inch !AR sun × sun Notes
AB
B40JIS B1
35trimmed
Kiku-ban

Chinese extensions

The Chinese standard GB/T 148–1997,[11] which replaced GB 148–1989, documents the standard ISO series, A and B, but adds a custom D series. This Chinese format originates from the Republic of China (1912–1949). The D series is not identical to the German or Swedish D series. It does not strictly follow the same principles as ISO paper sizes: The aspect ratio is only very roughly

\sqrt{2}

. The short side of the size is always 4 mm longer than the long side of the next smaller size. The long side of the size is always exactly  - i.e. without further rounding  - twice as long as the short side of the next smaller size.
D series!rowspan=2 title="aspect ratio"
ARAliasUntrimmed sizes
Sizemm × mm inch × inchmm × mm inch × inch
01.39271K
11.42862K
21.38954K
31.8K
41.383016K
51.415432K
61.369664K

Indian variants

The Bureau of Indian Standards recommends the "ISO-A series" size of drawing sheet for engineering drawing works. The Bureau of Indian Standards specifies all the recommendations for engineering drawing sheets in its bulletin IS 10711: 2001.[12]

The Bureau extended the ISO-A series with a Special Elongated Sizes (Second Choice). These sizes are achieved by increasing the shorter dimensions of a sheet of the ISO A series to lengths that are multiples of the shorter dimensions of the chosen basic sheet; in effect, all of the Indian elongated sizes emulate having several regular-size sheets joined on their long edge.

There is also a Exceptional Elongated Sizes (Third Choice). These sizes are obtained by increasing the shorter dimensions of a sheet of the ISO-A series to lengths that are multiples of the shorter dimensions of the chosen basic sheet. These sizes are used when a very large or extra elongated sheet is needed.

Soviet variants

The first standard of paper size in the Soviet Union was OST 303 in 1926. Six years later, it was replaced by OST 5115 which generally followed DIN 476 principles, but used Cyrillic lowercase letters instead of Latin uppercase, had the second row shifted so that б0 (B0) roughly corresponded to B1 and, more importantly, had slightly different sizes:[13]

The general adaptation of ISO 216 in the Soviet Union, which replaced OST 5115, was GOST 9327. In its 1960 version, it lists formats down to A13, B12 and C8 and also specifies, and prefixes for halving the shorter side (repeatedly) for stripe formats, e.g. A4 = 105 mm × 297 mm.

A standard for technical drawings from 1960, GOST 3450,[14] introduces alternative numeric format designations to deal with very high or very wide sheets.These 2-digit codes are based upon A4 = "11": The first digit is the factor the longer side (297 mm) is multiplied by and the second digit is the one for the shorter side (210 mm), so "24" is 2×297 mm × 4×210 mm = 594 mm × 840 mm.

Soviet formats with multiplied shorter side (mm×mm)
n(×1) ×2 ×3 ×4 ×5 ×6
5= A0 = 2A02523 × 11893364 × 11894204 × 1189 5045 × 1189
4= A1 = A0 1784 × 841 2378 × 841 2973 × 841 3568 × 841
3= A2 = A1 1261 × 595 1682 × 595 2102 × 595 2523 × 595
2 = A3 = A2 892 × 420 1189 × 420 1487 × 420 1784 × 420
1= A4 = A3 631 × 297 841 × 297 1051 × 297 1261 × 297
0= A5 = A4 446 × 210 595 × 210 743 × 210 892 × 210

GOST 3450 from 1960 was replaced by ESKD GOST 2301 in 1968,[15] but the numeric designations remained in popular use much longer.The new designations were not purely numeric but consisted of the ISO label followed by an 'x', or possibly the multiplication sign '×', and the factor, e.g. DIN 2A0 = GOST A0×2, but DIN 4A0 ≠ GOST A0×4, also listed are: A0×3, A1×3, A1×4, A2×3–A2×5, A3×3–A3×7, A4×3–A4×9. The formats ...×1 and ...×2 usually would be aliases for existing formats.

Elongated sizes

ISO 5457, last updated in 1999,[16] introduces elongated sizes that are formed by a combination of the dimensions of the short side of an A-size (e.g. A2) with the dimensions of the long side of another larger A-size (e.g. A0). The result is a new size, for example with the abbreviation A2.0 we would have a mm size.

AR
A1.0A1/A2 A0
A2.0A2/A3 A0
A2.1A1/A0
A3.0A3/A4 A0
A3.1A1/A0
A3.2A2/A1

These drawing paper sizes have been adopted by ANSI/ASME Y14.1M for use in the United States, alongside A0 through A4 and alongside inch-based sizes.

International envelope and insert sizes

Common folded or cut sizes of ISO paper: stripe formats and inserts
Namemm × mm inch × inch ARNotes
A4common flyer or stripe size
unnamedstandard folded size of German letters

DIN 5008 (previously DIN 676) prescribes, among many other things, two variants, A and B, for the location of the address field on the first page of a business letter and how to fold the A4 sheet accordingly, so the only part visible of the main content is the subject line.

Common envelopes for ISO paper, that are not simple C-series and B-series formats
Namemm × mm inch × inch ARContentNotes
DLA4, DIN 5008 A and Bdesignated long, "DIN lang" (DIN long); sometimes erroneously instead called "DLE", apparently for envelope; exactly matches Swedish SIS E6/E5 (E6:, E5:); envelope #5 in China, Chou/N 6 in Japan; fits well enclosed in C6/C5 for the purpose of e.g. reply mail
C6/C5common edge of C6 and C5 is 161 mm; also known as "Postfix", "DL+" or "DL Max", but those terms are not standardized
Italian centimeter-rounded C6/C5 or slightly wider DL
C7/C6 A5common edge of C7 and C6 is 114 mm
B6/C4 B6 is, C4 is
Invitesquare card with edge of A4 and A5, 210 mm
DIN E4listed in DIN 476–2, but not part of a series proper; SIS E4 is

International raw sizes

ISO 5457 specifies drawing paper sizes with a trimmed size equal to the A series sizes from A4 upward. The untrimmed sizes are 3 to 4 cm larger and rounded to the nearest centimetre. A0 through A3 are used in landscape orientation, while A4 is used in portrait orientation. Designations for preprinted drawing paper include the base sizes and a suffix, either T for trimmed or U for untrimmed sheets.

The withdrawn standard ISO 2784 did specify sizes of continuous, fan-fold forms based upon whole inches as was common for paper in continuous lengths in automatic data processing (ADP) equipment. Specifically, 12 inches (304.8 mm) were considered an untrimmed variant of the A4 height of 297 mm.

Size !colspan=3
Acceptable equivalent Direct equivalent Exact sizeGross size
inch × inch mm × mm ARinch × inch mm × mm ARmm × mmmm × mm inch × inch
A4title="gross width for A3 is 450 mm, intermediate gross widths of 375 mm and 400 mm have no ISO 216 equivalent"
A5
A6
A7

Transitional paper sizes

PA4 or L4

A transitional size called PA4 (210×), sometimes dubbed L4, was proposed for inclusion into the ISO 216 standard in 1975. It has the height of Canadian P4 paper (215 mm × 280 mm, about  in × 11 in) and the width of international A4 paper (210×), i.e. it uses the smaller value among the two for each side. The table shows how this format can be generalized into an entire format series.

The PA formats did not end up in ISO 216, because the committee decided that the set of standardized paper formats should be kept to the minimum necessary. However, PA4 remains of practical use today. In landscape orientation, it has the same 4:3 aspect ratio as the displays of traditional TV sets, some computer displays (e.g. the iPad) and data projectors. PA4, with appropriate margins is, therefore, a good choice as the format of presentation slides.

As a compromise between the two most popular paper sizes globally, PA4 is used today by many international magazines, because it can be printed easily on equipment designed for either A4 or US Letter. That means (in practice) it has turned out to be not so much a paper size as a page format. Apple, for instance, requires this format for digital music album booklets.[17]

The size 210 mm × 280 mm was documented in the Canadian standard CAN2-200.2-M79 "Common Image Area for Paper Sizes P4 and A4".[18]

F4

A non-standard F4 paper size is common in Southeast Asia. It is a transitional size with the shorter side of ISO A4 (210 mm, inch) and the longer side of British Foolscap (13-inch, 330 mm). ISO A4 is exactly 90% the height of F4.This size is sometimes also known as (metric) 'foolscap' or 'folio'.

In some countries, the narrow side of F4 is slightly broader: 8.5 inches (216 mm) or 215 mm. It is then equivalent to the US Government Legal and Foolscap Folio sizes.In Indonesia, where it is the legally-mandated paper size for use in the printing of national legislation, it is sometimes called Folio or HVS (from nl|houtvrij schrijfpapier, "wood-free writing paper"). In Philippines, it is commonly called long bond as opposed to short bond which refers to the US Letter paper size.

A sheet of F4 can be cut from a sheet of SRA4 with very little wastage. The size is also smaller than its Swedish equivalent SIS F4 at 239 mm × 338 mm.

Weltformat

The Weltformat (world format) was developed by German chemist Wilhelm Ostwald in 1911 as part of Die Brücke, around the same time DIN 476 was first discussed. It shares the same design primitives, especially the aspect ratio, but is based upon 1 cm as the short edge of the smallest size. Sizes were designated by roman numerals. The result, for the fourth through fourteenth size, is close to the DIN/ISO C series. [19]

[20]

Original world format sizes with equivalent C-series format
Weltformat mm × mm inch × inch DIN
I
II
III
IV C10
V C9
VI C8
VII C7
VIII C6
IX C5
X C4
XIC3
XII C2
XIII C1
XIV C0
XV
XVI

The sizes have been used for some print products in the early 20th century in central Europe but got replaced by DIN sizes almost entirely. However, it was successfully adopted from 1913 onwards for posters and placards in Switzerland. Even today, the default size for posters in Swiss advertisements, F4, is colloquially known as Weltformat, although it measures 895 mm × 1280 mm, i.e. 1 cm less than size XIV. [21] This poster size goes alongside F12 "Breitformat" 2685 mm × 1280 mm (3 × F4) and F24 "Großformat" 2685 mm × 2560 mm (2 × 3 × F4,) as well as F200 "Cityformat" 1165 mm × 1700 mm.

A0a

Although the movement is towards the international standard metric paper sizes, on the way there from the traditional ones there has been at least one new size just a little larger than that used internationally.

British architects and industrial designers once used a size called "Antiquarian", 31×, as listed above, but given in the New Metric Handbook (Tutt & Adler 1981) as 813× for board size. This is a little larger than ISO A0, 841 mm × 1189 mm. So for a short time, a size called A0a of 1000× was used in Britain, which is actually just a slightly shorter version of ISO B0 at 1414 mm.

Pliego

The most common paper sizes used for commercial and industrial printing in Colombia are based upon a size referred to as pliego that is ISO B1 (707 mm × 1000 mm) cut to full decimetres. Smaller sizes are derived by halving as usual and just get a vulgar fraction prefix: pliego and pliego.

K

In East Asia, i.e. Japan, Taiwan, and China in particular, there is a number of similar paper sizes in common use for book-making and other purposes. Confusingly, a single designation is often used with slightly different edge measures: The base sheet is labeled 1K (or Chinese: 1开, where K stands for ; or in Japanese); all smaller sizes derived by halving have the power of two number, i = 2n, in front of the uppercase letter K. The number in ISO designations, in contrast, is the exponent n that would yield the number of sheets cut from the base sizes.

The sizes of such folios depend on the base sheet. Pre-metric standards include:

The 4/6 standard has given rise to newer metric book-size standards, including:

4/6Taiwanese finishes (trimmed 4/6) Japan Kai Japanese finishesJIS B JIS P 0138 SAC
shaku-based inch-based trimmeduntrimmed
1K788 × 1091 787 × 1092 758 × 1060 760 × 1040 765 × 1085B1728 × 1030D0764 × 1064 780 × 1080
2K545 × 788 546 × 787 530 × 758 520 × 760 (542 × 765)B2515 × 728D1532 × 760 540 × 780
4K394 × 545 394 × 546 379 × 530 380 × 520 (382 × 542)B3364 × 515D2380 × 532 390 × 540
8K272 × 394 273 × 394 265 × 379 260 × 380 267 × 389 275 × 395 264 × 379 (271 × 382)B4257 × 364D3264 × 376 270 × 390
16K197 × 272 197 × 273 189 × 265 190 × 260 198 × 275 189 × 262 (191 × 271)B5182 × 257D4188 × 260 195 × 270
32K136 × 197 137 × 197 132 × 189 130 × 190 130 × 188 127 × 188 (135 × 191)B6128 × 182D5130 × 184 135 × 195
64K98 × 136 98 × 137 94 × 132 95 × 130 B791 × 128D692 × 130 97 × 135
128K68 × 98 66 × 94 65 × 95 B864 × 91 (65 × 92) (67 × 97)

North American paper sizes

Inch-based loose sizes

Size! inch × inch
mm × mm AR
Ledger
title="S12R photo print"Tabloid Extra
European EDP
Tabloid
title="11R photo print"EDP
Legal Extra
title="one of the standard ISO 1008 photo print sizes"Letter Extra
title="old US alias: Quarto"Letter Tab
Legal
title="British alias: Foolscap (Folio)"Government Legal;[22] Foolscap
Letter Plus
European Fanfold
title="Spanish: carta"Letter
Quarto
Government Legal (Foolscap Folio)
Demitab (Government Letter)
title="old British alias: (Copy Draught) Quarto; 8R or 6P photo print"Government Letter
title="old US alias: Monarch"Executive
title="old British alias: Imperial"
Memo, Statement, Mini, Invoice;
Stationery, Half Letter
Junior Legal
title="5R or 2L photo print"

The United States, Canada, and the Philippines[23] primarily use a different system of paper sizes from the rest of the world. The current standard sizes are unique to those countries, although due to the size of the North American market and proliferation of both software and printing hardware from the region, other parts of the world have become increasingly familiar with these sizes (though not necessarily the paper itself). Some traditional North American inch-based sizes differ from the Imperial British sizes described below.

Common American loose sizes

Letter, Legal and Ledger/Tabloid are by far the most commonly used of these for everyday activities, and the only ones included in Cascading Style Sheets (CSS).

The origins of the exact dimensions of Letter size paper are lost in tradition and not well documented. The American Forest and Paper Association argues that the dimension originates from the days of manual papermaking and that the 11-inch length of the page is about a quarter of "the average maximum stretch of an experienced vatman's arms."[24] However, this does not explain the width or aspect ratio.

Outside of North America, Letter size may also be known as "American Quarto".[25] If one accepts some trimming, the size is indeed one quarter of the old Imperial paper size known as Demy, NaN×.[26] Manufacturers of computer printers, however, recognize inch-based Quarto as or long.

Usage and adoption

US paper sizes are currently standard in the United States and are the most commonly used formats at least in the Philippines, most of Mesoamerica[27] and Chile. The latter use US Letter, but their Legal size is 13 inches tall (recognized as Foolscap by printer manufacturers, i.e. one inch shorter than its US equivalent.[28]

Mexico and Colombia, for instance, have adopted the ISO standard, but the US Letter format is still the system in use throughout the country. It is rare to encounter ISO standard papers in day-to-day uses, with Carta (Letter), Oficio (Government-Legal), and Doble carta (Ledger/Tabloid) being nearly universal. Printer manufacturers, however, recognize Oficio as long.

In Canada, select US paper sizes are a de facto standard.

Variant American loose sizes

There is an additional paper size,, to which the name Government-Letter was given by the IEEE Printer Working Group (PWG). It was prescribed by Herbert Hoover when he was Secretary of Commerce to be used for US government forms, apparently to enable discounts from the purchase of paper for schools, but more likely due to the standard use of trimming books (after binding) and paper from the standard letter size paper to produce consistency and allow "bleed" printing. In later years, as photocopy machines proliferated, citizens wanted to make photocopies of the forms, but the machines did not generally have this size of paper in their bins. Ronald Reagan therefore had the US government switch to regular Letter size, which is half an inch both longer and wider.[24] The former government size is still commonly used in spiral-bound notebooks, for children's writing and the like, a result of trimming from the current Letter dimensions.

By extension of the American standards, the halved Letter size,, meets the needs of many applications. It is variably known as Statement, Stationery, Memo, Half Letter, Half A (from ANSI sizes) or simply Half Size, and as Invoice by printer manufacturers. Like the similar-sized ISO A5, it is used for everything from personal letter writing to official aeronautical maps. Organizers, notepads, and diaries also often use this size of paper; thus 3-ring binders are also available in this size. Booklets of this size are created using word processing tools with landscape printing in two columns on letter paper which are then cut or folded into the final size.

A foot-long sheet with the common width of Letter and (Government) Legal, i.e., would have an aspect ratio very close to the square root of two as used by international paper sizes and would actually almost exactly match ISO RA4 (215 mm × 305 mm). This size is sometimes known as European Fanfold.

While Executive refers to in America, the Japanese organization for standardization specified it as, which is elsewhere known as Government Legal or Foolscap.

Standardized American paper sizes

In 1996, the American National Standards Institute adopted ANSI/ASME Y14.1 which defined a regular series of paper sizes based upon the de facto standard Letter size which it assigned "ANSI A", intended for technical drawings, hence sometimes labeled "Engineering". This series is somewhat similar to the ISO standard in that cutting a sheet in half would produce two sheets of the next smaller size and therefore also includes Ledger/Tabloid[29] as "ANSI B". Unlike the ISO standard, however, the arbitrary base sides forces this series to have two alternating aspect ratios. For example, ANSI A is less elongated than A4, while ANSI B is more elongated than A3.

The Canadian standard CAN2 9.60-M76 and its successor CAN/CGSB 9.60-94 "Paper Sizes for Correspondence" specified paper sizes P1 through P6, which are the U.S. paper sizes rounded to the nearest 5 mm.[30] All custom Canadian paper size standards were withdrawn in 2012.[31]

With care, documents can be prepared so that the text and images fit on either ANSI or their equivalent ISO sheets at a 1:1 reproduction scale.

ANSI and CAN paper sizes
US sizeinch × inch mm × mm AR Canadian size (mm × mm) Similar size (mm × mm)
colspan=4 CAN P6 107 × 140 ISO A6 105 × 148
colspan=4 CAN P5 140 × 215 ISO A5 148 × 210
ANSI A × 11 216 × 279 17:22 CAN P4 215 × 280 ISO A4 210 × 297
ANSI B11 × 17 279 × 432 11:17 CAN P3 280 × 430 ISO A3 297 × 420
ANSI C17 × 22 432 × 559 17:22 CAN P2 430 × 560 ISO A2 420 × 594
ANSI D22 × 34 559 × 864 11:17 CAN P1 560 × 860 ISO A1 594 × 841
ANSI E34 × 44 864 × 1118 17:22 colspan=2 ISO A0 841 × 1187

Other, informal, larger sizes continuing the alphabetic series illustrated above exist, but they are not part of the series per se, because they do not exhibit the same aspect ratios. For example, Engineering F size is with ca. 1.4286:1; it is commonly required for NAVFAC drawings, but is generally less commonly used. Engineering G size is high, but it is a roll format with a variable width up to in increments of . Engineering H through N sizes are also roll formats.

Such huge sheets were at one time used for full-scale layouts of aircraft parts, automotive parts, wiring harnesses, and the like, but are slowly being phased out, due to widespread use of computer-aided design (CAD) and computer-aided manufacturing (CAM). Some visual arts fields also continue to use these paper formats for large-scale printouts, such as for displaying digitally painted character renderings at life-size as references for makeup artists and costume designers or to provide an immersive landscape reference.

Architectural sizes

In addition to the system as listed above, there is a corresponding series of paper sizes used for architectural purposes defined in the same standard, ANSI/ASME Y14.1, which is usually abbreviated "Arch". This series also shares the property that bisecting each size produces two of the size below, with alternating aspect ratios. It may be preferred by North American architects because the aspect ratios (4:3 and 3:2) are ratios of small integers, unlike their ANSI (or ISO) counterparts. Furthermore, the aspect ratio 4:3 matches the traditional aspect ratio for computer displays.

The size Arch E1 has a different aspect ratio because it derives from adding 6 inches to each side of Arch D or subtracting the same amount from Arch E. Printer manufacturer recognize it as wide-format. An intermediate size between Arch C and D with a long side of 30inch does not exist.

Demitab

The demitab or demi-tab (a portmanteau of the French word 'French: demi' [half] and 'tabloid') is 8x, i.e. roughly one half of a sheet of 11x tabloid-size paper.[33]

"Demitab", "broadsheet" or "tabloid" format newspapers are not necessarily printed on paper measuring exactly their nominal size.

Notebook sizes

The sizes listed above are for paper sold loose in reams. There are many sizes of tablets of paper, that is, sheets of paper bound at one edge, usually by a strip of plastic or hardened PVA adhesive. Often there is a pad of cardboard (also known as paperboard or greyboard) at the bottom of the stack. Such a tablet serves as a portable writing surface, and the sheets often have lines printed on them, usually in non-repro blue, to make writing in a line easier. An older means of binding is to have the sheets stapled to the cardboard along the top of the tablet; there is a line of perforated holes across every page just below the top edge from which any page may be torn off. Lastly, a pad of sheets each weakly stuck with adhesive to the sheet below, trademarked as "Post-It" or "Stick-Em" and available in various sizes, serve as a sort of tablet.

"Letter pads" are, while the term "legal pad" is often used by laymen to refer to pads of various sizes including those of . Stenographers use "steno pads" of . The steno pad size is also used by Scholastic Corporation as the textblock size of their hardcover editions of the Harry Potter novels, with paperback editions using DIN D6.

Envelope sizes

US Postal Service size limitations, height × width × thickness[34] ! Mail piece! inch × inch × inch !! mm × mm × mm
Minimum NaNx
Postcard maximum NaNx
Letter maximum NaNx
Flat-size maximum12x

This implies that all postcards have an aspect ratio in the range from = 1.18 to = 1.71, but the machinable aspect ratio is further restricted to a minimum of 1.30.The only ISO 216 size in the US postcard range is A6.The theoretical maximum aspect ratio for enveloped letters is = 3.29, but is explicitly limited to 2.50.

Personal organizer sizes

mm × mm Holes
Filofax[35] M23 holes
Mini5 holes
Pocket6 holes
Personal, Slimline6 holes
A5(×) 148 × 210 6 holes
Deskfax (B5)(×)176 × 250 9 holes
A4(×)210 × 297 4 holes
Franklin Planner[36] Micro (-Letter)
Pocket
Compact
Classic (-Letter)
Monarch (Letter)
JeppesenAeronautical Chart (-Letter)7 holes; FAA: 3 holes at top

Index card sizes

See main article: index card.

Photography sizes

See main article: Photo print sizes.

Grain

Most industry standards express the direction of the grain last when giving dimensions (that is, 17 × 11 inches is short grain paper and 11 × 17 inches is long grain paper), although alternatively the grain alignment can be explicitly indicated with an underline (11 × 17 is a short grain) or the letter "M" for "machine" (11M × 17 is a short grain). Grain is important because the paper will crack if folded across the grain: for example, if a sheet 17 × 11 inches is to be folded to divide the sheet into two 8.5 × 11 halves, then the grain will be along the 11-inch side.[37] Paper intended to be fed into a machine that will bend the paper around rollers, such as a printing press, photocopier or typewriter, should be fed grain edge first so that the axis of the rollers is along the grain.

Traditional inch-based paper sizes

Traditionally, a number of different sizes were defined for large sheets of paper, and paper sizes were defined by the sheet name and the number of times it had been folded. Thus a full sheet of "royal" paper was 25 × 20 inches, and "royal octavo" was this size folded three times, so as to make eight sheets, and was thus 10 × inches. Royal sizes were used for posters and billboards.

Common divisions and their abbreviations
NameAbbr. Folds Leaves Pages
Foliofo, f 1 2 4
Quarto4to 2 4 8
Sexto, sixmo6to, 6mo 3 6 12
Octavo8vo 3 8 16
Duodecimo, twelvemo12mo 4 12 24
Sextodecimo, sixteenmo16mo 4 16 32

Imperial sizes were used in the United Kingdom and its territories and some survived in US book printing.

Imperial paper sizes
Name Variantinch × inch mm × mm AR
EmperorUK 1.5
Quad RoyalUS 1.25
Quad DemyUS 1.2857
AntiquarianUK 1.7097
Grand EagleUK 1.4609
Double ElephantUK 1.4984
AtlasUK 1.3077
Double RoyalUS 1.6
ColombierUK 1.4681
Double DemyUK 1.5
US 1.
ImperialUK 1.3636
Double Large PostUK 1.5713
both 1.2174
PrincessUK 1.3023
CartridgeUK 1.2381
Royalboth 1.25
Sheet, Half Post-->UK 1.2051
Double PostUK 1.6052
Super RoyalUK 1.4203
BroadsheetUS 1.
MediumUK 1.2425
US 1.2
Demyboth 1.2857
Copy DraughtUK 1.25
Large PostUK 1.2903
US 1.
PostUK 1.2419
US 1.2581
Crownboth 1.
Pinched PostUK 1.2533
FoolscapUK 1.2303
US 1.2595
Foolscap FolioUK 1.6256
US 1.5880
Small FoolscapUK 1.2453
BriefUK 1.1852
PottUK 1.2
Quarto US 1.
Executive, MonarchUS 1.4483

Traditional British paper sizes

Traditional British paper sizes are referred to by the number of sheets that can be cut from a sheet of uncut paper.[38] The standard Imperial uncut paper sizes used in offices and schools were "foolscap", "post", and "copy". Each uncut sheet can then be halved into folios, quartered into quartos, or eighthed into octavos.

Traditional French paper sizes

Before the adoption of the ISO standard system in 1967, France had its own paper size system. Raisin format is still in use today for artistic paper. All are standardized by the AFNOR.[39] Their names come from the watermarks that the papers were branded with when they were handcrafted, which is still the case for certain art papers. They also generally exist in double versions where the smallest measure is multiplied by two, or in quadruple versions where both measures have been doubled.

AFNOR paper sizes! Name !! Format (cm × cm) !! Use
Cloche30 × 40
Pot, écolier31 × 40
Tellière34 × 44old French administration
Couronne écriture36 × 46
Couronne édition37 × 47
Roberto39 × 50anatomic drawing
Écu40 × 52
Coquille44 × 56
Carré45 × 56
Cavalier46 × 62
Demi-raisin32,5 × 50drawing
Raisin50 × 65drawing
Double raisin65 × 100
Jésus56 × 76Atlas des sentiers et chemins vicinaux
Soleil60 × 80
Colombier affiche60 × 80
Colombier commercial63 × 90
Petit Aigle70 × 94
Grand Aigle75 × 105Plans cadastraux primitifs
(Napoleonic land registry)
75 × 106[40]
75 × 110[41]
Grand Monde90 × 126
Univers100 × 130

Business card sizes

AR
A874 × 52 ×
B888 × 62 ×
C881 × 57 ×
Iranian85 × 48 × 1.771
Western Europe85 × 55 ×
International86 × 54 ×
North America89 × 51 × 2
Eastern Europe, Asia, Africa, South America90 × 50 × 2
East Asia90 × 54 ×
Scandinavia, Southeast Asia, Oceania90 × 55 ×
Japan91 × 55 × 1.6

The international business card has the size of the smallest rectangle containing a credit card rounded to full millimeters, but in Western Europe, it is rounded to half centimetres (rounded up in Northern Europe), in Eastern Europe to full centimetres, in North America to half inches. However, credit card size, as defined in ISO/IEC 7810, also specifies rounded corners and thickness.

Newspaper sizes

See main article: Newspaper format.

Newspapers have a separate set of sizes.

In a recent trend[42] many newspapers have been undergoing what is known as "web cut down", in which the publication is redesigned to print using a narrower (and less expensive) roll of paper. In extreme examples, some broadsheet papers are nearly as narrow as traditional tabloids.

See also

Further reading

External links

Notes and References

  1. Web site: size . 25 January 2017 . https://web.archive.org/web/20170202023142/https://developer.mozilla.org/en-US/docs/Web/CSS/@page/size. 2 February 2017 . live.
  2. Web site: Lichtenberg's letter to Johann Beckmann . Markus Kuhn . 7 February 2006 . 3 April 2023 . https://web.archive.org/web/20111231214454/http://www.cl.cam.ac.uk/~mgk25/lichtenberg-letter.html . 31 December 2011 . live.
  3. Loi sur le timbre (Nº 2136) . Stamp Act (No. 2136) . 3 November 1798 . Bulletin des Lois de la République . 237 . 1–2 . fr . Republic of France . Paris . live . 2024-01-20 . https://web.archive.org/web/20090426170239/http://www.cl.cam.ac.uk/~mgk25/loi-timbre.html . 26 April 2009 . Markus Kuhn .
  4. Web site: Metrication Board. Final report of the Metrication Board. 1980. Department of Trade and Industry Consumer and Competition Policy Directorate. 17. https://web.archive.org/web/20130501034405/http://ukma.org.uk/sites/default/files/met1980.pdf. 29 September 2021. 1 May 2013.
  5. Web site: A Paper Sizes - A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 . 25 January 2017 . https://web.archive.org/web/20161029141208/http://www.papersizes.org/a-paper-sizes.htm . 29 October 2016 . live.
  6. Web site: B Paper Sizes - B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 . 25 January 2017 . https://web.archive.org/web/20161204151334/http://www.papersizes.org/b-paper-sizes.htm . 4 December 2016 . live.
  7. Web site: Envelope Sizes - ISO C Series & DL Envelopes . 25 January 2017 . https://web.archive.org/web/20161204141443/http://www.papersizes.org/c-envelope-sizes.htm . 4 December 2016 . live.
  8. Web site: Papper—Formatserier A-G . Svensk standard SS 01 47 11 Utgåva 2 . Page 2 Figur 1 - Serieformaten exemplifierade . Swedish Standards Institute . 25 December 2019 . https://web.archive.org/web/20131101094445/http://www.sis.se/pappersteknik/pappersprodukter/ss-14711 . 1 November 2013 . live.
  9. Web site: Typography and readability – a guideline . Karolinska University Press . 19 October 2012 . https://web.archive.org/web/20131101001357/http://ki.se/content/1/c6/05/90/62/Typography_en.pdf . 1 November 2013.
  10. Web site: International paper sizes. A, B, C and D series . https://archive.today/20140701234154/http://home.comcast.net/~tamivox/dave/IntlPaper/index.html . dead . 1 July 2014 . Dave . Barber . 8 May 2012.
  11. Web site: 国家标准 GB/T 148-1997 . 26 May 1997 . Standardization Administration of China . 13 April 2017 . https://web.archive.org/web/20170413154251/http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=20746CFEE63514B24DD64A415CB65377 . 13 April 2017 . dead .
  12. Book: SP 46 (2003): Engineering Drawing Practice for Schools and Colleges . Bureau of Indian Standards . 81-7061-019-2 . Jul 2003 . live . https://web.archive.org/web/20230909054902/https://law.resource.org/pub/in/bis/S01/is.sp.46.2003.pdf . Sep 9, 2023 .
  13. Web site: Митяев . К. Г. . 1946 . Теория и практика архивного дела . Theory and practice of archiving . dead . https://web.archive.org/web/20200208012944/http://www.spsl.nsc.ru/FullText/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B8/%D0%A3%D1%81%D1%82.%20902%20%D0%9C.678/%D0%A3%D1%81%D1%82.%20902%20%D0%9C.678.pdf . 2020-02-08 . 2022-07-15.
  14. Web site: Formaty . ru:Форматы . Formats . Мир Сварки . ru . 2 December 2017 . https://web.archive.org/web/20171202203209/http://weldworld.ru/theory/cherchenie/formaty.html#link2 . 2 December 2017 . live.
  15. Web site: Formaty (ESKD GOST 2.301-68) . ru:Форматы (ЕСКД ГОСТ 2.301-68) . Formats . Единая Система Конструкторской Документации . ru . 2 December 2017 . https://web.archive.org/web/20161201015706/http://graph.power.nstu.ru/wolchin/umm/eskd/eskd/GOST/2_301.htm . 1 December 2016 . live.
  16. Web site: ISO 5457:1999. ISO.
  17. Web site: Music Digital Booklet Profile . iTunes Video and Audio Asset Guide . Apple iTunes Store . 2019.
  18. Web site: CAN2-200.2-M79: "Common Image Area for Paper Sizes P4 and A4" . https://web.archive.org/web/20170907123539/http://www.scc.ca/en/standardsdb/standards/2464 . 7 September 2017 . 1 April 1979. (NB. Withdrawn 1 March 2012.)
  19. News: Wilhelm Ostwald. Die Weltformate: I. Für Drucksachen. Seybold. Ansbach. 255038683. Börsenblatt für den Deutschen Buchhandel. 18 October 1911. 243. 12330.
  20. Book: Karl Wilhelm Bührer. Raumnot und Weltformat: Schriften über Die Brücke. Band 2. Seybold. München / Ansbach . 1912. 253384402.
  21. https://www.apgsga.ch/en/templates-and-specifications/ APG|SGA: Templates and specifications
  22. Web site: Government Legal Size. mainthebest.
  23. Belize, Canada, Chile, Colombia, Costa Rica, El Salvador, Guatemala, Mexico, Nicaragua, Panama, Philippines, Puerto Rico, United States, Venezuela according to Web site: Territory Information . CLDR . 31 . 24 March 2018 . https://web.archive.org/web/20180620043901/http://www.unicode.org/cldr/charts/latest/supplemental/territory_information.html . 20 June 2018 . live., which is a data collection used by almost all software manufacturers.
  24. Web site: Why is the standard paper size in the U.S. 8 1/2" x 11"? . 4 August 2009 . American Forest and Paper Association . dead . https://web.archive.org/web/20120220192919/http://www.afandpa.org/paper.aspx?id=511 . 20 February 2012.
  25. Web site: Junior Legal Paper Size . Dimensions Guide . 21 February 2010 . dead . https://web.archive.org/web/20100704081857/http://www.dimensionsguide.com/junior-legal-paper-size/ . 4 July 2010.
  26. Book: Fyffe . Charles . Basic Copyfitting . Studio Vista . 1969 . London . 978-0-289-79705-1 . 74.
  27. Web site: Armada mil . 12 December 2010 . https://web.archive.org/web/20110524053225/http://www.armada.mil.co/index.php?idcategoria=251610&download=Y . 24 May 2011 . live.
  28. Web site: Request for inclusion of Page Size 8.5"×13" . 11 August 2008 . Rally . de Leon.
  29. Web site: Adobe Systems Incorporated . Adobe Systems . 9 February 1996 . PostScript Printer Description File Format Specification . 4.3 . . 191 . 6 March 2008 . dead . https://web.archive.org/web/20080723180944/http://partners.adobe.com/public/developer/en/ps/5003.PPD_Spec_v4.3.pdf . 23 July 2008.
  30. Web site: International standard paper sizes . 6 March 2008 . Kuhn . Markus . https://web.archive.org/web/20080115144056/http://www.cl.cam.ac.uk/~mgk25/iso-paper.html . 15 January 2008 . live.
  31. Canadian custom paper size standards ! Number !! Title !! Original CAN2 release !! CAN/CGSB replacement !! Withdrawal
    9.60 Paper Sizes for Correspondence 1976-04 1994-07 2012-04
    9.61 Paper Sizes for Printing 1976-04 1994-07
    9.62 Paper Sizes for Single Part Continuous Business Forms 1981-12 1994-07
    9.64 Drawing Sheet Sizes 1979-04 1994-07
    200.2 Common Image Area for Paper Sizes P4 and A4 1979-04 2012-03
  32. Web site: Technical drawing paper sizes in the United States . https://web.archive.org/web/20161008145734/http://sizes.com/materials/paperUStech.htm . 8 October 2016. at sizes.com
  33. Web site: Maximum Image Area for printing at Horizon Publications . Horizon Publications . 28 August 2009 . https://web.archive.org/web/20081009210153/http://www.horizonpublications.ca/html/max_image_area.php . 9 October 2008 . dead .
  34. Book: United States Postal Service . DMM 101: Physical Standards . https://web.archive.org/web/20140426235609/http://pe.usps.com/text/dmm300/101.htm#6_3_1 . 26 April 2014 . Section 6.3.2: Postcard Dimensions . 26 April 2014.
  35. Web site: Filofax . dead . https://web.archive.org/web/20100927152900/http://www.filofax.sg/sizeguide/ . 27 September 2010.
  36. Web site: Franklin Planner . 28 April 2019 . https://web.archive.org/web/20180801231712/http://www.franklinplanner.com/ . 1 August 2018 . live.
  37. Web site: Paper Grain & Smoothness: Don't Go Against the Grain . Xerox Corp. . A paper mill may indicate paper grain on carton and ream labels, product brochures, swatch books and price lists in several ways:
    1. You may see the words Grain Long or Grain Short.
    2. The dimension parallel to the grain may be underscored. For example, 8.5x11 indicates long grain, while 11×17 indicates short grain.
    3. 'M' may be used to indicate machine direction, for example, 11M×17 indicates short grain.
    Fold paper parallel to the grain direction. Paper folded against the grain may be rough and crack along the folded edge. The heavier the paper, the more likely roughness and cracking will occur. . 10 May 2013 . https://web.archive.org/web/20130425030450/http://www.xerox.com/printer-supplies/paper-stock/paper-grain/enus.html . 25 April 2013 . dead .
  38. Web site: British Imperial Paper Sizes . PaperSizes.org . 8 August 2022.
  39. Book: Norme NF Q 02-000: Dimensions des papiers d'écriture et de certaines catégories de papiers d'impression . . fr.
  40. Web site: AIGLE: Définition de AIGLE . Centre national de ressources textuelles et lexicales (CNRTL) . 22 May 2015 . fr . https://web.archive.org/web/20150522112240/http://www.cnrtl.fr/lexicographie/aigle . 22 May 2015 . live.
  41. Web site: L'origine des noms de papier . https://web.archive.org/web/20060319010826/http://www.clairefontaine.com/Dossiers/Beaux-Arts/Plus-d-infos-sur-le-papier-Beaux-Arts/Les-formats.html . dead . 19 March 2006 . fr.
  42. Web site: Press web . Naa.org . 12 December 2010 . dead . https://web.archive.org/web/20080704154509/http://www.naa.org/technology/pressweb/index.html . 4 July 2008.