In combinatorial optimization, network flow problems are a class of computational problems in which the input is a flow network (a graph with numerical capacities on its edges), and the goal is to construct a flow, numerical values on each edge that respect the capacity constraints and that have incoming flow equal to outgoing flow at all vertices except for certain designated terminals.[1]
Specific types of network flow problems include:
The max-flow min-cut theorem equates the value of a maximum flow to the value of a minimum cut, a partition of the vertices of the flow network that minimizes the total capacity of edges crossing from one side of the partition to the other. Approximate max-flow min-cut theorems provide an extension of this result to multi-commodity flow problems. The Gomory–Hu tree of an undirected flow network provides a concise representation of all minimum cuts between different pairs of terminal vertices.
Algorithms for constructing flows include
Otherwise the problem can be formulated as a more conventional linear program or similar and solved using a general purpose optimization solver.