Monoamine releasing agent explained
A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters.[1] [2] [3] [4] [5] The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; monoamine releasing agents can induce the release of one or more of these neurotransmitters.
Monoamine releasing agents work by reversing the direction of the monoamine transporters (MATs), including the serotonin transporter (SERT), norepinephrine transporter (NET), and/or dopamine transporter (DAT), causing them to promote efflux of non-vesicular cytoplasmic monoamine neurotransmitter rather than reuptake of synaptic monoamine neurotransmitter. Many, but not all monoamine releasing agents, also reverse the direction of the vesicular monoamine transporter 2 (VMAT2), thereby additionally resulting in efflux of vesicular monoamine neurotransmitter into the cytoplasm.
A variety of different classes of drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters. These include psychostimulants and appetite suppressants acting as dopamine and norepinephrine releasers like amphetamine, methamphetamine, and phentermine; sympathomimetic agents acting as norepinephrine releasers like ephedrine and pseudoephedrine; non-stimulant appetite suppressants acting as serotonin releasers like fenfluramine and chlorphentermine; and entactogens acting as releasers of serotonin and/or other monoamines like MDMA. Trace amines like phenethylamine and tryptamine, as well as the monoamine neurotransmitters themselves, are endogenous monoamine releasing agents. It is thought that monoamine release by endogenous mediators may play some physiological regulatory role.
MRAs must be distinguished from monoamine reuptake inhibitors (MRIs) and monoaminergic activity enhancers (MAEs), which similarly increase synaptic monoamine neurotransmitter levels and enhance monoaminergic signaling but work via distinct mechanisms.
Types and selectivity
MRAs can be classified by the monoamines they mainly release, although these drugs lie on a spectrum:
- Selective for one neurotransmitter
- Non-selective, releasing two or more neurotransmitters
The differences in selectivity of MRAs is the result of different affinities as substrates for the monoamine transporters, and thus differing ability to gain access into monoaminergic neurons and induce monoamine neurotransmitter release.
As of present, no selective DRAs are known. This is because it has proven extremely difficult to separate DAT affinity from NET affinity and retain releasing efficacy at the same time.[6] Several selective SDRAs, including tryptamine, (+)-α-ethyltryptamine (αET), 5-chloro-αMT, and 5-fluoro-αET, are known. However, besides their serotonin release, these compounds additionally act as non-selective serotonin receptor agonists, including of the serotonin 5-HT2A receptor (with accompanying hallucinogenic effects), and some of them are known to act as monoamine oxidase inhibitors.
Effects and uses
MRAs can produce varying effects depending on their selectivity for inducing the release of different monoamine neurotransmitters.
Selective SRAs such as chlorphentermine have been described as dysphoric and lethargic.[7] [8] Less selective SRAs that also stimulate the release of dopamine, such as methylenedioxymethamphetamine (MDMA), are described as more pleasant, more reliably elevating mood and increasing energy and sociability.[9] SRAs have been used as appetite suppressants and as entactogens. They have also been proposed for use as more effective antidepressants and anxiolytics than selective serotonin reuptake inhibitors (SSRIs) because they can produce much larger increases in serotonin levels in comparison.[10]
DRAs, usually non-selective for both norepinephrine and dopamine, have psychostimulant effects, causing an increase in energy, motivation, elevated mood, and euphoria.[11] Other variables can significantly affect the subjective effects, such as infusion rate (increasing positive effects of DRAs) and psychological expectancy effects.[12] They are used in the treatment of attention deficit hyperactivity disorder (ADHD), as appetite suppressants, wakefulness-promoting agents, to improve motivation, and are drugs of recreational use and misuse.
Selective NRAs are minimally psychoactive, but as demonstrated by ephedrine, may be distinguished from placebo, and may trends towards liking.[13] They may also be performance-enhancing,[14] in contrast to reboxetine which is solely a norepinephrine reuptake inhibitor.[15] [16] In addition to their central effects, NRAs produce peripheral sympathomimetic effects like increased heart rate, blood pressure, and force of heart contractions. They are used as nasal decongestants and bronchodilators, but have also seen use as wakefulness-promoting agents, appetite suppressants, and antihypotensive agents. They have additionally seen use as performance-enhancing drugs, for instance in sports.
Mechanism of action
MRAs cause the release of monoamine neurotransmitters by various complex mechanisms of action. They may enter the presynaptic neuron primarily via plasma membrane transporters, such as the dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT). Some, such as exogenous phenethylamine, amphetamine, and methamphetamine, can also diffuse directly across the cell membrane to varying degrees. Once inside the presynaptic neuron, they may inhibit the reuptake of monoamine neurotransmitters through vesicular monoamine transporter 2 (VMAT2) and release the neurotransmitters stores of synaptic vesicles into the cytoplasm by inducing reverse transport at VMAT2. MRAs can also bind to the intracellular receptor TAAR1 as agonists, which triggers a phosphorylation cascade via protein kinases that results in the phosphorylation of monoamine transporters located at the plasma membrane (i.e., the dopamine transporter, norepinephrine transporter, and serotonin transporter); upon phosphorylation, these transporters transport monoamines in reverse (i.e., they move monoamines from the neuronal cytoplasm into the synaptic cleft).[17] The combined effects of MRAs at VMAT2 and TAAR1 result in the release of neurotransmitters out of synaptic vesicles and the cell cytoplasm into the synaptic cleft where they bind to their associated presynaptic autoreceptors and postsynaptic receptors. Certain MRAs interact with other presynaptic intracellular receptors which promote monoamine neurotransmission as well (e.g., methamphetamine is also an agonist at σ1 receptor).
In spite of findings that TAAR1 activation by amphetamines can reverse the monoamine transporters and mediate monoamine release however,[18] [19] [20] major literature reviews on monoamine releasing agents by experts like Richard B. Rothman and David J. Heal state that the nature of monoamine transport reversal is not well understood and/or do not mention TAAR1 activation. Moreover, amphetamines continue to produce psychostimulant-like effects and induction of dopamine and norepinephrine release in TAAR1 knockout mice.[21] [22] [23] In fact, TAAR1 knockout mice are supersensitive to the effects of amphetamines and TAAR1 activation appears to inhibit the striatal dopaminergic effects of psychostimulants.[24] Additionally, many substrate-type MRAs that do not bind to and/or activate the (human) TAAR1 are known, including most cathinones, ephedrine, 4-methylamphetamine, and 4-methylaminorex derivatives, among others.[25] [26] [27] [28]
There is a constrained and relatively small molecular size requirement for compounds to act as monoamine releasing agents. This is because they must be small enough to serve as substrates of the monoamine transporters and thereby be transported inside of monoaminergic neurons by these proteins, in turn allowing them to induce monoamine neurotransmitter release. Compounds with chemical features extending beyond the size constraints for releasers will instead act as partial releasers, reuptake inhibitors, or be inactive. Partial releasers show reduced maximal efficacy in releasing monoamine neurotransmitters compared to conventional full releasers.
Other related agents
DAT "inverse agonists"
Dopamine reuptake inhibitors (DRIs) have been grouped into two types, typical or conventional DRIs like cocaine, WIN-35428 (β-CFT), and methylphenidate that produce potent psychostimulant, euphoric, and reinforcing effects, and atypical DRIs like vanoxerine (GBR-12909), modafinil, benztropine, and bupropion, which do not produce such effects or have greatly reduced such effects.[29] [30] [31] It has been proposed that typical DRIs may not actually be acting primarily as DRIs but rather as dopamine releasing agents (DRAs) via mechanisms distinct from conventional substrate-type DRAs like amphetamines. A variety of different pieces of evidence support this hypothesis and help to explain otherwise confusing findings. Under this model, typical cocaine-like DRIs have been referred to with the new label of dopamine transporter (DAT) "inverse agonists" to distinguish them from conventional substrate-type DRAs. An alternative theory is that typical DRIs and atypical DRIs stabilize the DAT in different conformations, with typical DRIs resulting in an outward-facing open conformation that produces differing pharmacological effects from those of atypical DRIs.[32]
Monoaminergic activity enhancers
Some MRAs, like the amphetamines amphetamine and methamphetamine, as well as trace amines like phenethylamine, tryptamine, and tyramine, are additionally monoaminergic activity enhancers (MAEs).[33] [34] [35] That is, they induce the action potential-mediated release of monoamine neurotransmitters (in contrast to MRAs, which induced uncontrolled monoamine release independent of neuronal firing). They are usually active as MAEs at much lower concentrations than those at which they induce monoamine release. The MAE actions of MAEs may be mediated by TAAR1 agonism, which has likewise been implicated in monoamine-releasing actions.[36] [37] MAEs without concomitant potent monoamine-releasing actions, like selegiline (L-deprenyl), phenylpropylaminopentane (PPAP), and benzofuranylpropylaminopentane (BPAP), have been developed.
Endogenous MRAs
A number of endogenous compounds are known to act as MRAs. These include the monoamine neurotransmitters dopamine (an NDRA), norepinephrine (an NDRA), and serotonin (an SRA) themselves, as well as the trace amines phenethylamine (an NDRA),[38] [39] tryptamine (an SDRA or imbalanced SNDRA), and tyramine (an NDRA). Synthetic MRAs are substantially based on structural modification of these endogenous compounds, most prominently including the substituted phenethylamines and substituted tryptamines.[40] [41] [42]
Release of monoamine neurotransmitters by themselves, for instance in the cases of serotonin, norepinephrine, and dopamine, has been referred to as "self-release". The physiological significance of the findings that monoamine neurotransmitters can act as releasing agents of themselves is unclear. However, it could imply that efflux is a common neurotransmitter regulatory mechanism that can be induced by any transporter substrate.
It is possible monoamine neurotransmitter self-release could be a protective mechanism. It is notable in this regard that intracellular non-vesicular or cytoplasmic dopamine is toxic to neurons and that the vesicular monoamine transporter 2 (VMAT2) is neuroprotective by packaging this dopamine into synaptic vesicles.[43] [44] [45] Along similar lines, monoamine releasing agents induce the efflux of non-vesicular monoamine neurotransmitter and thereby move cytoplasmic neurotransmitter into the extracellular space. However, many, though not all, monoamine releasing agents also act as VMAT2 inhibitors and reversers and hence concomitantly induce the release of vesicular monoamine neurotransmitter into the cytoplasm.
Monoaminergic neurotoxicity
See main article: Monoaminergic neurotoxin.
Some MRAs have been found to act as monoaminergic neurotoxins and hence to produce long-lasting damage to monoaminergic neurons.[46] [47] Examples include dopaminergic neurotoxicity with amphetamine and methamphetamine and serotonergic neurotoxicity with methylenedioxymethamphetamine (MDMA). Amphetamine may produce significant dopaminergic neurotoxicity even at therapeutic doses.[48] [49] [50] [51] [52] [53] However, clinical doses of amphetamine producing neurotoxicity is controversial and disputed.[54] In contrast to amphetamines, monoamine reuptake inhibitors like methylphenidate lack apparent neurotoxic effects.
Analogues of MDMA with retained MRA activity but reduced or no serotonergic neurotoxicity, like 5,6-methylenedioxy-2-aminoindane (MDAI) and 5-iodo-2-aminoindane (5-IAI), have been developed.[55] [56] Certain drugs have been found to block the neurotoxicity of MRAs in animals. For instance, the selective MAO-B inhibitor selegiline has been found to prevent the serotonergic neurotoxicity of MDMA in rodents.
Activity profiles
Compound | data-sort-type="number" | ! | data-sort-type="number" | ! | data-sort-type="number" | ! | Type | Class | Ref |
---|
1-Naphthylmethcathinone (AMAPN) | 21 | | 55 | | Cathinone | [57] |
1-Phenylpiperazine (PP) | 880 | 186 | 2530 | SNRA | | [58] |
2-Aminoindane (2-AI) | >10000 | 86 | 439 | NDRA | | [59] |
| 8.9 | 21.6 | 38.6 | SNDRA | | [60] |
2-Bromomethcathinone (2-BMC) | 2837 | 156 | 650 | NDRA | Cathinone | |
2-Chloromethcathinone (2-CMC) | 2815 | 93 | 179 | NDRA | Cathinone | |
2-Fluoromethamphetamine (2-FMA) | ~15000 | <100 | ~90 | NDRA | Amphetamine | [61] [62] |
2-Fluoromethcathinone (2-FMC) | >10000 | | 48.7 | NDRA | Cathinone | |
2-Methoxymethcathinone (2-MeOMC) | 7220 | 339 | 920 | NDRA | Cathinone | |
2-Methylmethcathinone (2-MMC) | 347–490 | 53 | 81–97.9 | SNDRA | Cathinone | |
2-Naphthylmethcathinone (BMAPN) | 27 | | 34 | | Cathinone | |
2,4,5-Trimethoxyamphetamine (TMA-2) | >100000 | >100000 | >100000 | | Amphetamine | |
2,4,6-Trimethoxyamphetamine (TMA-6) | >100000 | >100000 | >100000 | | Amphetamine | |
| >100000 | >100000 | 100000 | | | |
| | | | | Phenethylamine | |
| >100000 | >100000 | >100000 | | Phenethylamine | [63] |
| >100000 | >100000 | >100000 | | Phenethylamine | |
| | | | | Phenethylamine | |
| 21.9 | 13.4 | 21.7 | SNDRA | | |
3-Bromomethcathinone (3-BMC) | 136–137 | 25 | 21–28.0 | | Cathinone | |
3-Chloroamphetamine (3-CA) | 120 | 9.4 | 11.8 | SNDRA | Amphetamine | [64] |
3-Chloromethcathinone (3-CMC) | 211–410 | 19–54.4 | 26–46.8 | SNDRA | Cathinone | [65] |
3-Fluoroamphetamine (3-FA) | 1937 | 16.1 | 24.2 | NDRA | | [66] |
3-Fluoromethcathinone (3-FMC) | 1460 | | 64.8 | | Cathinone | |
3-Methoxyamphetamine (3-MeOA) | | 58.0 | 103 | | Amphetamine | |
3-Methoxy-4-hydroxymethamphetamine (HMMA) | 589 | 625 | 607–2884 | SNDRA | Amphetamine | [67] |
3-Methoxymethcathinone (3-MeOMC) | 306–683 | 111 | 109–129 | SNDRA | Cathinone | |
3-Methylamphetamine (3-MA) | 218 | 18.3 | 33.3 | NDRA | Amphetamine | |
3-Methylmethcathinone (3-MMC) | 268–292 | 27 | 28–70.6 | SNDRA | Cathinone | |
3,4-Dihydroxyamphetamine (HHA) | | 33 | 3485 | | Amphetamine | |
3,4-Dihydroxymethamphetamine (HHMA) | | 77 | 1729 | | Amphetamine | |
3,4,5-Trimethoxyamphetamine (TMA) | 16000 | >100000 | >100000 | | Amphetamine | |
| 21.2 | 46.2 | 66.6 | SNDRA | | |
| 5246 | 41.4 | 109 | NDRA | | [68] |
4-Bromomethcathinone (4-BMC; brephedrone) | 42.5–60.2 | 100 | 59.4 | | Cathinone | |
4-Chloroamphetamine (4-CA; PCA) | 28.3 | 23.5–26.2 | 42.2–68.5 | SNDRA | Amphetamine | |
4-Chloromethamphetamine (4-CMA; PCMA; clephedrone) | 29.9 | 36.5 | 54.7 | SNDRA | Amphetamine | |
4-Chloroethylamphetamine (4-CEA; PCEA) | 33.8 | 162.6 | 238.0 | SNDRA | Amphetamine | |
4-Chlorocathinone (4-CC) | 128.4 | 85.1 | 221.8 | SNDRA | Cathinone | |
4-Chloromethcathinone (4-CMC) | 71.1–144 | 44–90.9 | 42.2–74.7 | SNDRA | Cathinone | |
4-Chloroethcathinone (4-CEC) | 152.6 | 5194.0 | 353.6 | SDRA | Cathinone | |
4-Fluoroamphetamine (4-FA) | 730–939 | 28.0–37 | 51.5–200 | NDRA | Amphetamine | |
4-Fluoromethcathinone (4-FMC; flephedrone) | 1290–1450 | 62 | 83.4–119 | | Cathinone | |
4-Hydroxy-3-methoxyamphetamine (HMA) | 897 | 694 | 1450–3423 | | Amphetamine | |
4-Methoxyamphetamine (4-MeOA) | | 166 | 867 | | Amphetamine | |
4-Methoxymethcathinone (4-MeOMC; methedrone) | 120–195 | 111 | 506–881 | | Cathinone | |
| 53.2 | 4.8 | 1.7 | NDRA | | [69] |
4-Methylamphetamine (4-MA) | 53.4 | 22.2 | 44.1 | SNDRA | Amphetamine | |
4-Methylmethamphetamine (4-MMA) | 67.4 | 66.9 | 41.3 | SNDRA | Amphetamine | [70] |
4-Methylphenethylamine (4-MPEA) | | | 271 | | Phenethylamine | |
4-Methylthiomethamphetamine (4-MTMA) | 21 | | | | Amphetamine | [71] |
4,4'-Dimethylaminorex (4,4'-DMAR) | | | | SNDRA | Aminorex | |
cis-4,4'-Dimethylaminorex | 17.7–18.5 | 11.8–26.9 | 8.6–10.9 | SNDRA | Aminorex | [72] |
trans-4,4'-Dimethylaminorex | 59.9 | 31.6 | 24.4 | SNDRA | Aminorex | |
| 19 | 21 | 31 | SNDRA | Amphetamine | [73] |
| 10.3 | 38.4 | 92.8 | SNDRA | | |
5-(2-Aminopropyl)indole (5-IT) | 28–104.8 | 13.3–79 | 12.9–173 | SNDRA | Amphetamine | [74] [75] |
| 33.2 | >10000 | | SRA | | |
| 16.2 | 3434 | 54.3 | SDRA | Tryptamine | |
| 36.6 | 5334 | 150 | SDRA | Tryptamine | |
| 14–19 | 78–126 | 32–37 | SNDRA | Tryptamine | |
5-MABB (5-MBPB) | | | | | Amphetamine | |
(S)-5-MABB | 31 | 158 | 210 | SNDRA | Amphetamine | |
(R)-5-MABB | 49 | 850 | | SRA | Amphetamine | |
| 64–90 | 24 | 41–459 | SNDRA | Amphetamine | [76] |
(S)-5-MAPB | 67 | | 258 | | Amphetamine | |
(R)-5-MAPB | 184 | | 1951 | | Amphetamine | |
| 460 | 8900 | 1500 | SNDRA | Tryptamine | [77] |
| 134 | 861 | 2646 | SNRA | Aminoindane | |
| >100000 | >100000 | >100000 | | Tryptamine | |
| >100000 | >100000 | >100000 | | Tryptamine | |
| >100000 | >100000 | >100000 | | Tryptamine | |
| >100000 | >100000 | >100000 | | Tryptamine | |
| 36 | 14 | 10 | SNDRA | Amphetamine | |
| 10.7 | 13.6 | 7.2 | SNDRA | | |
6-(2-Aminopropyl)indole (6-IT) | 19.9 | 25.6 | 164.0 | SNDRA | Amphetamine | |
6-Chloroamphetamine (6-CA) | | 19.1 | 62.4 | | Amphetamine | |
6-Fluoroamphetamine (6-FA) | | 24.1 | 38.1 | | Amphetamine | |
6-MABB (6-MBPB) | | | | | Amphetamine | [78] [79] |
(R)-6-MABB | 172 | 227 | | SNRA | Amphetamine | |
(S)-6-MABB | 54 | 77 | 41 | SNDRA | Amphetamine | |
| 33 | 14 | 20 | SNDRA | Amphetamine | |
6-Methoxyamphetamine (6-MeOA) | | 473 | 1478 | | Amphetamine | |
6-Methylamphetamine (6-MA) | | 37 | 127 | | Amphetamine | |
| 36.9 | 28.5 | 16.8 | SNDRA | | |
α-Ethyltryptamine (αET; AET) | 23.2 | 640 | 232 | SDRA | Tryptamine | |
(–)-α-Ethyltryptamine | 54.9 | 3670 | 654 | SRA | Tryptamine | |
(+)-α-Ethyltryptamine | 34.7 | 592 | 57.6 | SDRA | Tryptamine | |
α-Methylisotryptamine (isoAMT) | 177 | 81 | 1062 | SNRA | | |
α-Methyltryptamine (αMT; AMT) | 21.7–68 | 79–112 | 78.6–180 | SNDRA | Tryptamine | |
β-Methylphenethylamine (BMPEA) | | 126 | 627 | | Phenethylamine | |
β,N-Dimethylphenethylamine (MPPA, BMMPEA) | | 154 | 574 | | Phenethylamine | |
| >10000 | >10000 | >10000 | | | [80] |
| 193–414 | 15.1–26.4 | 9.1–49.4 | SNDRA | Aminorex | [81] |
| | | | NDRA | Amphetamine | |
| 698–1765 | 6.6–10.2 | 5.8–24.8 | NDRA | Amphetamine | [82] |
| | 9.5 | 27.7 | NDRA | Amphetamine | |
| 180 | 540 | 2,300 | NDRA | Amphetamine | |
| ≥6050 | 62–68 | 175–600 | NDRA | | [83] |
| 41.3 | | 92.8 | SDRA | Tryptamine | [84] [85] |
| 190 | | 620 | | Tryptamine | [86] |
| 200 | | 865 | | Tryptamine | |
| 295 | | 2100 | | Tryptamine | |
| 30.5 | >10000 | >10000 | SRA | Tryptamine | |
| | | | NDRI | Cathinone | [87] [88] |
| | | | | Amphetamine | |
| 330 | | | SRA/NDRI | Cathinone | [89] [90] |
| 6100–7595 | 23.6–25.6 | 34.8–83.1 | NDRA | Cathinone | |
-Cathinone | >10000 | 72.0 | 183.9 | NDRA | Cathinone | [91] |
-Cathinone | 2366–9267 | 12.4–28 | 18–24.6 | NDRA | Cathinone | |
| 30.9 | >10000 | 2650 | SRA | Amphetamine | |
| | | | DRI | Cathinone | |
| | 223 | 1250 | | Amphetamine | [92] |
Dimethyltryptamine (DMT) | 114 | 4166 | >10000 | SRA | Tryptamine | |
| | | | | Amphetamine | |
Dipropyltryptamine (DPT) | >100000 | >100000 | >100000 | | Tryptamine | |
| 26 | 56 | 1207 | SNRA | Arylpiperazine | |
| >10000 | 66.2 | 86.9 | NDRA | Phenethylamine | |
| 117 | 325 | 597 | SNDRA | Amphetamine | [93] |
| 347 | 327 | 496 | SNDRA | Cathinone | |
Ephedrine (racephedrine) | | | | NDRA | | |
-Ephedrine (ephedrine) | >10000 | 43.1–72.4 | 236–1350 | NDRA | Cathinol | |
-Ephedrine | >10000 | 218 | 2104 | NRA | Cathinol | |
| | | | (NDRI) | Cathinone | [94] |
| | | | NDRA | Phenethylamine | |
| 1923–2118 | 88.3–99.3 | 267.6–>1000 | NRA | Cathinone | |
| | | 88.5 | | Amphetamine | |
S(+)-Ethylamphetamine | 333.0 | 28.8 | 44.1 | NDRA | Amphetamine | [95] |
| 617.4 | 4251 | 1122 | SNDRA | Cathinone | |
| 1020 | | | SRA/NDRI | Cathinone | [96] |
| 79.3–108 | 739 | >10000 | SRA | Amphetamine | [97] [98] |
| 51.7 | 302 | >10000 | SNRA | Amphetamine | |
| 147 | >10000 | >10000 | SRA | Amphetamine | [99] |
| 14100 | 110 | 90 | NDRA | Cathinone | |
| 7210 | 6340 | 5840 | SNDRA | Cathinone | |
| 540 | 3300 | >100000 | SNRA | Amphetamine | |
| 28–38.1 | ≥1400 | 63000 | SRA | Arylpiperazine | [100] |
| 160–162 | 47–108 | 106–190 | SNDRA | Amphetamine | |
(R)-MDA | 310 | 290 | 900 | SNDRA | Amphetamine | |
(S)-MDA | 100 | 50.0 | 98.5 | SNDRA | Amphetamine | |
Methylenedioxycathinone (MDC) | 966 | 394 | 370 | SNDRA | Cathinone | |
| 114 | 117 | 1334 | SNRA | Aminoindane | |
| 47 | 2608 | 622 | SNDRA | Amphetamine | |
(R)-MDEA | 52 | 651 | 507 | SNDRA | Amphetamine | |
(S)-MDEA | 465 | | | SRA | Amphetamine | |
| 50–85 | 54–110 | 51–278 | SNDRA | Amphetamine | [101] |
| 340 | 560 | 3700 | SNDRA | Amphetamine | |
(S)-MDMA | 74 | 136 | 142 | SNDRA | Amphetamine | |
| | | | SNDRA | Aminorex | |
cis-MDMAR | 43.9 | 14.8 | 10.2 | SNDRA | Aminorex | |
trans-MDMAR | 73.4 | 38.9 | 36.2 | SNDRA | Aminorex | |
| 118.3–122 | 58–62.7 | 49.1–51 | SNDRA | Cathinone | |
| 13 | 34 | 10 | SNDRA | Amphetamine | |
| | | | NDRA | Amphetamine | |
| 736–1291.7 | 12.3–13.8 | 8.5–24.5 | NDRA | Amphetamine | |
| 4640 | 28.5 | 416 | NRA | Amphetamine | |
| 2592–5853 | 22–26.1 | 12.5–49.9 | NDRA | Cathinone | [102] [103] |
-Methcathinone | | | | NRA | Cathinone | |
-Methcathinone | 1772 | 13.1 | 14.8 | NDRA | Cathinone | |
Methylenedioxypyrovalerone (MDPV) | | 13 (= 24%) | 2.3 (= 24%) | NDRI | | [104] |
Methylone (MDMC) | 234–708 | 140–270 | 117–220 | SNDRA | Cathinone | [105] |
Mexedrone (4-MMC-MeO) | 2525 | | | SRA/NDRI | Cathinone | [106] |
| 31 | 3101 | >10000 | SRA | Aminoindane | |
| 567 | 105 | 64 | SNDRA | Cathinone | |
| 212 | 40 | 29 | SNDRA | Cathinone | |
N-Ethyltryptamine (NET) | 18.6 | | | SRA | Tryptamine | |
N-Methyltryptamine (NMT) | 22.4 | 733 | 321 | SRA | Tryptamine | |
| 3.4 | 11.1 | 12.6 | SNDRA | Amphetamine | [107] |
Norephedrine (phenylpropanolamine) | | | | NDRA | Cathinol | |
-Norephedrine | >10000 | 42.1 | 302 | NDRA | Cathinol | [108] |
-Norephedrine | >10000 | 137 | 1371 | NRA | Cathinol | |
| >10000 | 164 | 869 | NDRA | Phenethylamine | |
| 104 | 168–170 | 1900–1925 | SNRA | Amphetamine | |
(+)-Norfenfluramine | 59.3 | 72.7 | 924 | SNRA | Amphetamine | |
(–)-Norfenfluramine | 287 | 474 | >10000 | SNRA | Amphetamine | |
Normephedrone (4-methylcathinone) | 210 | 100 | 220 | SNDRA | Cathinone | [109] |
| | | | NDRA | Cyclohexethylamine | |
| | | | NDRA | Cathinol | |
-Norpseudoephedrine (cathine) | >10000 | 15.0 | 68.3 | NDRA | Cathinol | |
| >10000 | 30.1 | 294 | NDRA | Cathinol | |
| 175 | 39.1 | 296–542 | SNDRA | Arylpiperazine | [110] |
| 23 | 65 | 58 | SNDRA | | |
| >10000 | 305 | 688 | NDRA | Phenylbutynamine | |
| 476–1030 (≈ 50%) | | | SRA/NDRI | Cathinone | |
Phenacylamine (β-ketophenethylamine) | >10000 | | 208 | | Phenethylamine | |
| >100000 | >10000 | >10000 | | Phenylmorpholine | [111] |
| >10000 | 10.9 | 39.5 | NDRA | Phenethylamine | [112] |
| 7765 | 50.4 | 131 | NDRA | Phenylmorpholine | |
| 3511 | 39.4 | 262 | NDRA | Amphetamine | |
| | | | | Amphetamine | |
-Phenylalaninol | >10000 | 106 | 1355 | NRA | Amphetamine | |
-Phenylalaninol | | | | | Amphetamine | |
| | | 225 | | Amphetamine | |
| | 222 | 1491 | NDRA | Phenylpropylamine | |
| 3200 | 1500 | 11000 | SNRA | Arylpiperazine | |
| 43 | >10000 | >10000 | SRA | Arylpiperazine | |
| | | (1013) | | Amphetamine | |
| | | | NDRA | Cyclohexethylamine | |
| 3128 | | 975.9 | SDRA | Cathinone | |
Pseudoephedrine (racemic pseudoephedrine) | | | | NDRA | Cathinol | |
| >10000 | 4092 | 9125 | NDRA | Cathinol | |
-Pseudoephedrine (pseudoephedrine) | >10000 | 224 | 1988 | NRA | Cathinol | |
| >10000 | 514 | | NRA | Phenylmorpholine | |
| 561 | >10000 | >10000 | SRA | Tryptamine | |
| 44.4 | >10000 | ≥1960 | SRA | Tryptamine | |
| 33 | >10000 | >10000 | SRA | Arylpiperazine | |
| 121 | >10000 | >10000 | SRA | Arylpiperazine | |
| 32.6 | 716 | 164 | SDRA | Tryptamine | [113] [114] |
| 2775 | 40.6 | 119 | NDRA | Phenethylamine | |
Notes: The smaller the value, the more strongly the substance releases the neurotransmitter. |
|
Further reading
- Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV . The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue . Neuropsychopharmacology . 37 . 5 . 1192–1203 . April 2012 . 22169943 . 3306880 . 10.1038/npp.2011.304 .
- Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL . Neurochemical profiles of some novel psychoactive substances . European Journal of Pharmacology . 700 . 1–3 . 147–151 . January 2013 . 23261499 . 3582025 . 10.1016/j.ejphar.2012.12.006 . Bryan Roth .
Notes and References
- Rothman RB, Baumann MH . Monoamine transporters and psychostimulant drugs . European Journal of Pharmacology . 479 . 1–3 . 23–40 . October 2003 . 14612135 . 10.1016/j.ejphar.2003.08.054 .
- Rothman RB, Baumann MH . Therapeutic potential of monoamine transporter substrates . Current Topics in Medicinal Chemistry . 6 . 17 . 1845–1859 . 2006 . 17017961 . 10.2174/156802606778249766 .
- Book: Blough B . Dopamine-releasing agents . Dopamine Transporters: Chemistry, Biology and Pharmacology . 305–320 . July 2008 . 978-0-470-11790-3 . Wiley . Hoboken [NJ] . https://archive.today/20241104022653/https://archive.org/details/dopaminetranspor0000unse/page/310/mode/2up . 4 November 2024 . TABLE 11-2 Comparison of the DAT- and NET-Releasing Activity of a Series of Amphetamines [...].
- Heal DJ, Smith SL, Gosden J, Nutt DJ . Amphetamine, past and present--a pharmacological and clinical perspective . Journal of Psychopharmacology . 27 . 6 . 479–496 . June 2013 . 23539642 . 3666194 . 10.1177/0269881113482532 .
- Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL . Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter . Drug and Alcohol Dependence . 147 . 1–19 . February 2015 . 25548026 . 4297708 . 10.1016/j.drugalcdep.2014.12.005 . Converging lines of evidence have solidified the notion that DA releasers are substrates of the transporter and once translocated, they reverse the normal direction of transporter flux to evoke release of endogenous neurotransmitters. The nature of this reversal is not well understood, but the entire process is primarily transporter-dependent and requires elevated intracellular sodium concentrations, phosphorylation of DAT, and possible involvement of transporter oligomers (Khoshbouei et al., 2003, 2004; Sitte and Freissmuth, 2010). .
- Rothman RB, Blough BE, Baumann MH . Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions . The AAPS Journal . 9 . 1 . E1-10 . January 2007 . 17408232 . 2751297 . 10.1208/aapsj0901001 .
- Book: Brust JC . Neurological Aspects of Substance Abuse. 2004. Butterworth-Heinemann. 978-0-7506-7313-6. 117–.
- Book: Competitive problems in the drug industry: hearings before Subcommittee on Monopoly and Anticompetitive Activities of the Select Committee on Small Business, United States Senate, Ninetieth Congress, first session . 1976 . U.S. Government Printing Office. 2–.
- Parrott AC, Stuart M . Ecstasy (MDMA), amphetamine, and LSD: comparative mood profiles in recreational polydrug users. Human Psychopharmacology: Clinical and Experimental. 1 September 1997. 12. 5. 501–504. 10.1002/(sici)1099-1077(199709/10)12:5<501::aid-hup913>3.3.co;2-m. en. 1099-1077. 10.1.1.515.2896.
- Scorza C, Silveira R, Nichols DE, Reyes-Parada M . Effects of 5-HT-releasing agents on the extracellullar hippocampal 5-HT of rats. Implications for the development of novel antidepressants with a short onset of action . Neuropharmacology . 38 . 7 . 1055–1061 . July 1999 . 10428424 . 10.1016/s0028-3908(99)00023-4 .
- Morean ME, de Wit H, King AC, Sofuoglu M, Rueger SY, O'Malley SS . The drug effects questionnaire: psychometric support across three drug types . Psychopharmacology . 227 . 1 . 177–192 . May 2013 . 23271193 . 3624068 . 10.1007/s00213-012-2954-z .
- Nelson RA, Boyd SJ, Ziegelstein RC, Herning R, Cadet JL, Henningfield JE, Schuster CR, Contoreggi C, Gorelick DA . Effect of rate of administration on subjective and physiological effects of intravenous cocaine in humans . Drug and Alcohol Dependence . 82 . 1 . 19–24 . March 2006 . 16144747 . 10.1016/j.drugalcdep.2005.08.004 .
- Berlin I, Warot D, Aymard G, Acquaviva E, Legrand M, Labarthe B, Peyron I, Diquet B, Lechat P . Pharmacodynamics and pharmacokinetics of single nasal (5 mg and 10 mg) and oral (50 mg) doses of ephedrine in healthy subjects . European Journal of Clinical Pharmacology . 57 . 6–7 . 447–455 . September 2001 . 11699608 . 10.1007/s002280100317 . 12410591 .
- Powers ME . Ephedra and its application to sport performance: another concern for the athletic trainer? . Journal of Athletic Training . 36 . 4 . 420–424 . October 2001 . 16558668 . 155439 .
- Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF . Central fatigue: the serotonin hypothesis and beyond . Sports Medicine . 36 . 10 . 881–909 . 1 January 2006 . 17004850 . 10.2165/00007256-200636100-00006 . 5178189 .
- Roelands B, Meeusen R . Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature . Sports Medicine . 40 . 3 . 229–246 . March 2010 . 20199121 . 10.2165/11533670-000000000-00000 . 25717280 .
- Miller GM . The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity . Journal of Neurochemistry . 116 . 2 . 164–176 . January 2011 . 21073468 . 3005101 . 10.1111/j.1471-4159.2010.07109.x .
- Book: Wu R, Liu J, Li JX . Behavioral Pharmacology of Drug Abuse: Current Status . Trace amine-associated receptor 1 and drug abuse . Adv Pharmacol . 93 . 373–401 . 2022 . 35341572 . 9826737 . 10.1016/bs.apha.2021.10.005 . 978-0-323-91526-7 . It is reported that methamphetamine (METH) interacts with TAAR1 and subsequently inhibits DA uptake, enhance DA efflux and induces DAT internalization, and these effects are dependent on TAAR1 (Xie & Miller, 2009). For example, METH-induced inhibition of DA uptake was observed in TAAR1 and DAT cotransfected cells and WT mouse and monkey striatal synaptosomes but not in DAT-only transfected cells or in striatal synaptosomes of TAAR1-KO mice (Xie & Miller, 2009). TAAR1 activation was enhanced by co-expression of monoamine transporters and this effect could be blocked by monoamine transporter antagonists (Xie & Miller, 2007; Xie et al., 2007). Furthermore, DA activation of TAAR1 induced C-FOS-luciferase expression only in the presence of DAT (Xie et al., 2007)..
- Xie Z, Miller GM . A receptor mechanism for methamphetamine action in dopamine transporter regulation in brain . The Journal of Pharmacology and Experimental Therapeutics . 330 . 1 . 316–325 . July 2009 . 19364908 . 2700171 . 10.1124/jpet.109.153775 .
- Lewin AH, Miller GM, Gilmour B . Trace amine-associated receptor 1 is a stereoselective binding site for compounds in the amphetamine class . Bioorganic & Medicinal Chemistry . 19 . 23 . 7044–7048 . December 2011 . 22037049 . 3236098 . 10.1016/j.bmc.2011.10.007 . While our data suggest a role for TAAR1 in eliciting amphetamine-like stimulant effects, it must be borne in mind that the observed in vivo effects are likely to result from interaction with both TAAR1 and monoamine transporters. Thus it has been shown that the selective TAAR1 agonist RO5166017 fully prevented psychostimulant-induced and persistent hyperdopaminergia-related hyperactivity in mice.42 This effect was found to be DAT-independent, since suppression of hyperactivity was observed in DAT-KO mice.42 The collected information leads us to conclude that TAAR1 is a stereoselective binding site for amphetamine and that TAAR1 activation by amphetamine and its congeners may contribute to the stimulant properties of this class of compounds. .
- Book: Espinoza S, Gainetdinov RR . Taste and Smell . Neuronal Functions and Emerging Pharmacology of TAAR1 . Topics in Medicinal Chemistry . Springer International Publishing . Cham . 23 . 2014 . 978-3-319-48925-4 . 10.1007/7355_2014_78 . 175–194.
- Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau JL, Hoener MC . Trace amine-associated receptor 1 modulates dopaminergic activity . The Journal of Pharmacology and Experimental Therapeutics . 324 . 3 . 948–956 . March 2008 . 18083911 . 10.1124/jpet.107.132647 .
- Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM . Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1 . Pharmacology, Biochemistry, and Behavior . 101 . 2 . 201–207 . April 2012 . 22079347 . 3288391 . 10.1016/j.pbb.2011.10.025 .
- Liu J, Wu R, Li JX . TAAR1 and Psychostimulant Addiction . Cellular and Molecular Neurobiology . 40 . 2 . 229–238 . March 2020 . 31974906 . 7845786 . 10.1007/s10571-020-00792-8 .
- Kuropka P, Zawadzki M, Szpot P . A narrative review of the neuropharmacology of synthetic cathinones-Popular alternatives to classical drugs of abuse . Hum Psychopharmacol . 38 . 3 . e2866 . May 2023 . 36866677 . 10.1002/hup.2866 . Another feature that distinguishes [substituted cathinones (SCs)] from amphetamines is their negligible interaction with the trace amine associated receptor 1 (TAAR1). Activation of this receptor reduces the activity of dopaminergic neurones, thereby reducing psychostimulatory effects and addictive potential (Miller, 2011; Simmler et al., 2016). Amphetamines are potent agonists of this receptor, making them likely to self‐inhibit their stimulating effects. In contrast, SCs show negligible activity towards TAAR1 (Kolaczynska et al., 2021; Rickli et al., 2015; Simmler et al., 2014, 2016). [...] The lack of self‐regulation by TAAR1 may partly explain the higher addictive potential of SCs compared to amphetamines (Miller, 2011; Simmler et al., 2013)..
- Simmler LD, Liechti ME . Pharmacology of MDMA- and Amphetamine-Like New Psychoactive Substances . Handb Exp Pharmacol . 252 . 143–164 . 2018 . 29633178 . 10.1007/164_2018_113 . The activation of human TAAR1 might diminish the effects of psychostimulation and intoxication arising from 7-APB effects on monoamine transporters (see 4.1.3. for more details). Affinity to mouse and rat TAAR1 has been shown for many psychostimulants, but species differences are common (Simmler et al. 2016). For example, [5-(2-aminopropyl)indole (5-IT)] and [4-methylamphetamine (4-MA)] bind and activate TAAR1 in the nanomolar range, but do not activate human TAAR1..
- Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME . In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1 . J Pharmacol Exp Ther . 357 . 1 . 134–144 . April 2016 . 26791601 . 10.1124/jpet.115.229765 .
- Rickli A, Kolaczynska K, Hoener MC, Liechti ME . Pharmacological characterization of the aminorex analogs 4-MAR, 4,4'-DMAR, and 3,4-DMAR . Neurotoxicology . 72 . 95–100 . May 2019 . 30776375 . 10.1016/j.neuro.2019.02.011 . 2019NeuTx..72...95R .
- Heal DJ, Gosden J, Smith SL . Dopamine reuptake transporter (DAT) "inverse agonism"--a novel hypothesis to explain the enigmatic pharmacology of cocaine . Neuropharmacology . 87 . 19–40 . December 2014 . 24953830 . 10.1016/j.neuropharm.2014.06.012 .
- Schmitt KC, Rothman RB, Reith ME . Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates . The Journal of Pharmacology and Experimental Therapeutics . 346 . 1 . 2–10 . July 2013 . 23568856 . 3684841 . 10.1124/jpet.111.191056 .
- Schmitt KC, Reith ME . The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors . PLOS ONE . 6 . 10 . e25790 . 2011 . 22043293 . 3197159 . 10.1371/journal.pone.0025790 . free . 2011PLoSO...625790S .
- Tanda G, Hersey M, Hempel B, Xi ZX, Newman AH . Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder . Current Opinion in Pharmacology . 56 . 13–21 . February 2021 . 32927246 . 8247144 . 10.1016/j.coph.2020.07.007 .
- Shimazu S, Miklya I . Pharmacological studies with endogenous enhancer substances: beta-phenylethylamine, tryptamine, and their synthetic derivatives . Progress in Neuro-Psychopharmacology & Biological Psychiatry . 28 . 3 . 421–427 . May 2004 . 15093948 . 10.1016/j.pnpbp.2003.11.016 . 37564231 .
- Knoll J . Enhancer regulation/endogenous and synthetic enhancer compounds: a neurochemical concept of the innate and acquired drives . Neurochemical Research . 28 . 8 . 1275–1297 . August 2003 . 12834268 . 10.1023/a:1024224311289 .
- Knoll J, Miklya I, Knoll B, Markó R, Rácz D . Phenylethylamine and tyramine are mixed-acting sympathomimetic amines in the brain . Life Sciences . 58 . 23 . 2101–2114 . 1996 . 8649195 . 10.1016/0024-3205(96)00204-4 .
- Harsing LG, Knoll J, Miklya I . Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum . International Journal of Molecular Sciences . 23 . 15 . 8543 . August 2022 . 35955676 . 9369307 . 10.3390/ijms23158543 . free .
- Harsing LG, Timar J, Miklya I . Striking Neurochemical and Behavioral Differences in the Mode of Action of Selegiline and Rasagiline . International Journal of Molecular Sciences . 24 . 17 . 13334 . August 2023 . 37686140 . 10487936 . 10.3390/ijms241713334 . free .
- Nakamura M, Ishii A, Nakahara D . Characterization of beta-phenylethylamine-induced monoamine release in rat nucleus accumbens: a microdialysis study . European Journal of Pharmacology . 349 . 2–3 . 163–169 . May 1998 . 9671094 . 10.1016/s0014-2999(98)00191-5 .
- Zsilla G, Hegyi DE, Baranyi M, Vizi ES . 3,4-Methylenedioxymethamphetamine, mephedrone, and β-phenylethylamine release dopamine from the cytoplasm by means of transporters and keep the concentration high and constant by blocking reuptake . European Journal of Pharmacology . 837 . 72–80 . October 2018 . 30172789 . 10.1016/j.ejphar.2018.08.037 .
- Book: Shulgin AT, Shulgin A . Pihkal: A Chemical Love Story . Transform Press . Biography/science . 1991 . 978-0-9630096-0-9 . 18 August 2024 .
- Book: Shulgin AT, Shulgin A . Tihkal: The Continuation . Transform Press . 1997 . 978-0-9630096-9-2 . 18 August 2024 .
- Book: Shulgin A, Manning T, Daley PF . The Shulgin Index: Psychedelic Phenethylamines and Related Compounds . Transform Press . 1 . 2011 . 978-0-9630096-3-0 . 2024-08-18 .
- Guillot TS, Miller GW . Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons . Mol Neurobiol . 39 . 2 . 149–170 . April 2009 . 19259829 . 10.1007/s12035-009-8059-y .
- Mulvihill KG . Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters . Neurochem Int . 122 . 94–105 . January 2019 . 30465801 . 10.1016/j.neuint.2018.11.004 .
- Goldstein DS, Kopin IJ, Sharabi Y . Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders . Pharmacol Ther . 144 . 3 . 268–282 . December 2014 . 24945828 . 4591072 . 10.1016/j.pharmthera.2014.06.006 .
- Book: Kostrzewa, Richard M. . Handbook of Neurotoxicity . Survey of Selective Monoaminergic Neurotoxins Targeting Dopaminergic, Noradrenergic, and Serotoninergic Neurons . Springer International Publishing . Cham . 2022 . 978-3-031-15079-1 . 10.1007/978-3-031-15080-7_53 . 159–198.
- Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M . Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms . Prog Neurobiol . 155 . 149–170 . August 2017 . 26455459 . 10.1016/j.pneurobio.2015.09.011 . 10261/156486 . free .
- Baumeister AA . Is Attention-Deficit/Hyperactivity Disorder a Risk Syndrome for Parkinson's Disease? . Harv Rev Psychiatry . 29 . 2 . 142–158 . 2021 . 33560690 . 10.1097/HRP.0000000000000283 . It has been suggested that the association between PD and ADHD may be explained, in part, by toxic effects of these drugs on DA neurons.241 [...] An important question is whether amphetamines, as they are used clinically to treat ADHD, are toxic to DA neurons. In most of the animal and human studies cited above, stimulant exposure levels are high relative to clinical doses, and dosing regimens (as stimulants) rarely mimic the manner in which these drugs are used clinically. The study by Ricaurte and colleagues248 is an exception. In that study, baboons orally self-administered a racemic (3:1 d/l) amphetamine mixture twice daily in increasing doses ranging from 2.5 to 20 mg/day for four weeks. Plasma amphetamine concentrations, measured at one-week intervals, were comparable to those observed in children taking amphetamine for ADHD. Two to four weeks after cessation of amphetamine treatment, multiple markers of striatal DA function were decreased, including DA and DAT. In another group of animals (squirrel monkeys), d/l amphetamine blood concentration was titrated to clinically comparable levels for four weeks by administering varying doses of amphetamine by orogastric gavage. These animals also had decreased markers of striatal DA function assessed two weeks after cessation of amphetamine..
- Asser A, Taba P . Psychostimulants and movement disorders . Front Neurol . 6 . 75 . 2015 . 25941511 . 4403511 . 10.3389/fneur.2015.00075 . free . Amphetamine treatment similar to that used for ADHD has been demonstrated to produce brain dopaminergic neurotoxicity in primates, causing the damage of dopaminergic nerve endings in the striatum that may also occur in other disorders with long-term amphetamine treatment (57)..
- Advokat C . Update on amphetamine neurotoxicity and its relevance to the treatment of ADHD . J Atten Disord . 11 . 1 . 8–16 . July 2007 . 17606768 . 10.1177/1087054706295605 .
- Berman SM, Kuczenski R, McCracken JT, London ED . Potential adverse effects of amphetamine treatment on brain and behavior: a review . Mol Psychiatry . 14 . 2 . 123–142 . February 2009 . 18698321 . 2670101 . 10.1038/mp.2008.90 . Though the paradigm used by Ricaurte et al. 53 arguably still incorporates amphetamine exposure at a level above much clinical use,14,55 it raises important unanswered questions. Is there a threshold of amphetamine exposure above which persistent changes in the dopamine system are induced? [...].
- Ricaurte GA, Mechan AO, Yuan J, Hatzidimitriou G, Xie T, Mayne AH, McCann UD . Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates . J Pharmacol Exp Ther . 315 . 1 . 91–98 . October 2005 . 16014752 . 10.1124/jpet.105.087916 .
- Courtney KE, Ray LA . Clinical neuroscience of amphetamine-type stimulants: From basic science to treatment development . Prog Brain Res . 223 . 295–310 . 2016 . 26806782 . 10.1016/bs.pbr.2015.07.010 . Repeated exposure to moderate to high levels of methamphetamine has been related to neurotoxic effects on the dopaminergic and serotonergic systems, leading to potentially irreversible loss of nerve terminals and/or neuron cell bodies (Cho and Melega, 2002). Preclinical evidence suggests that d-amphetamine, even when administered at commonly prescribed therapeutic doses, also results in toxicity to brain dopaminergic axon terminals (Ricaurte et al., 2005)..
- Gerlach M, Grünblatt E, Lange KW . Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system? . Atten Defic Hyperact Disord . 5 . 2 . 71–81 . June 2013 . 23605387 . 10.1007/s12402-013-0105-y .
- Oeri HE . Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy . J Psychopharmacol . 35 . 5 . 512–536 . May 2021 . 32909493 . 8155739 . 10.1177/0269881120920420 .
- Pinterova N, Horsley RR, Palenicek T . Synthetic Aminoindanes: A Summary of Existing Knowledge . Front Psychiatry . 8 . 236 . 2017 . 29204127 . 5698283 . 10.3389/fpsyt.2017.00236 . free .
- Web site: Yadav . Barkha J . Understanding Structure–Activity Relationship of Synthetic Cathinones (Bath Salts) Utilizing Methylphenidate . VCU Scholars Compass . 16 July 2019 . 24 November 2024 .
- Severinsen K, Kraft JF, Koldsø H, Vinberg KA, Rothman RB, Partilla JS, Wiborg O, Blough B, Schiøtt B, Sinning S . Binding of the amphetamine-like 1-phenyl-piperazine to monoamine transporters . ACS Chem Neurosci . 3 . 9 . 693–705 . September 2012 . 23019496 . 3447394 . 10.1021/cn300040f .
- Halberstadt AL, Brandt SD, Walther D, Baumann MH . 2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors . Psychopharmacology (Berl) . 236 . 3 . 989–999 . March 2019 . 30904940 . 6848746 . 10.1007/s00213-019-05207-1 .
- Rudin D, McCorvy JD, Glatfelter GC, Luethi D, Szöllősi D, Ljubišić T, Kavanagh PV, Dowling G, Holy M, Jaentsch K, Walther D, Brandt SD, Stockner T, Baumann MH, Halberstadt AL, Sitte HH . Aminopropylbenzothiophenes (APBTs) are novel monoamine transporter ligands that lack stimulant effects but display psychedelic-like activity in mice . Neuropsychopharmacology . 47 . 4 . 914–923 . March 2022 . 34750565 . 10.1038/s41386-021-01221-0 . 8882185 .
- Web site: Baggott M . [Comment] ]. 21 January 2022 . I measured DA and 5-HT release in vitro and [2-FMA] basically didn't release 5-HT (EC50s were around 90 nM at DAT and 15000 nM at SERT)..
- Web site: Baggott M . [Comment] ]. 30 April 2024 . [2-FMA is] a potent substrate-type releaser at NET and DAT (EC50s below 100 nM) but not SERT. [...] It's my own (Tactogen's, really) unpublished data. I assayed it while trying to understand the Borax combo..
- Eshleman AJ, Forster MJ, Wolfrum KM, Johnson RA, Janowsky A, Gatch MB . Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function . Psychopharmacology (Berl) . 231 . 5 . 875–888 . March 2014 . 24142203 . 3945162 . 10.1007/s00213-013-3303-6 .
- Blough BE, Landavazo A, Partilla JS, Baumann MH, Decker AM, Page KM, Rothman RB . Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics . ACS Med Chem Lett . 5 . 6 . 623–627 . June 2014 . 24944732 . 4060932 . 10.1021/ml500113s .
- Kohut SJ, Fivel PA, Blough BE, Rothman RB, Mello NK . Effects of methcathinone and 3-Cl-methcathinone (PAL-434) in cocaine discrimination or self-administration in rhesus monkeys . Int J Neuropsychopharmacol . 16 . 9 . 1985–1998 . October 2013 . 23768644 . 10.1017/S146114571300059X .
- Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL . Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs . The Journal of Pharmacology and Experimental Therapeutics . 313 . 2 . 848–854 . May 2005 . 15677348 . 10.1124/jpet.104.080101 . 12135483 .
- Yubero-Lahoz S, Ayestas MA, Blough BE, Partilla JS, Rothman RB, de la Torre R, Baumann MH . Effects of MDMA and related analogs on plasma 5-HT: relevance to 5-HT transporters in blood and brain . Eur J Pharmacol . 674 . 2-3 . 337–344 . January 2012 . 22079770 . 3253888 . 10.1016/j.ejphar.2011.10.033 .
- Negus SS, Baumann MH, Rothman RB, Mello NK, Blough BE . Selective suppression of cocaine- versus food-maintained responding by monoamine releasers in rhesus monkeys: benzylpiperazine, (+)phenmetrazine, and 4-benzylpiperidine . J Pharmacol Exp Ther . 329 . 1 . 272–281 . April 2009 . 19151247 . 2670586 . 10.1124/jpet.108.143701 .
- Brandt SD, Baumann MH, Partilla JS, Kavanagh PV, Power JD, Talbot B, Twamley B, Mahony O, O'Brien J, Elliott SP, Archer RP, Patrick J, Singh K, Dempster NM, Cosbey SH . Characterization of a novel and potentially lethal designer drug (±)-cis-para-methyl-4-methylaminorex (4,4'-DMAR, or 'Serotoni') . Drug Testing and Analysis . 6 . 7–8 . 684–695 . 2014 . 24841869 . 4128571 . 10.1002/dta.1668 .
- Solis E, Partilla JS, Sakloth F, Ruchala I, Schwienteck KL, De Felice LJ, Eltit JM, Glennon RA, Negus SS, Baumann MH . N-Alkylated Analogs of 4-Methylamphetamine (4-MA) Differentially Affect Monoamine Transporters and Abuse Liability . Neuropsychopharmacology . 42 . 10 . 1950–1961 . September 2017 . 28530234 . 5561352 . 10.1038/npp.2017.98 .
- Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE . Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters . The Journal of Pharmacology and Experimental Therapeutics . 341 . 1 . 251–262 . April 2012 . 22271821 . 3364510 . 10.1124/jpet.111.188946 .
- McLaughlin G, Morris N, Kavanagh PV, Power JD, Twamley B, O'Brien J, Talbot B, Dowling G, Mahony O, Brandt SD, Patrick J, Archer RP, Partilla JS, Baumann MH . Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3',4'-methylenedioxy-4-methylaminorex (MDMAR) . Drug Testing and Analysis . 7 . 7 . 555–564 . July 2015 . 25331619 . 5331736 . 10.1002/dta.1732 .
- Brandt SD, Walters HM, Partilla JS, Blough BE, Kavanagh PV, Baumann MH . The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats . Psychopharmacology (Berl) . 237 . 12 . 3703–3714 . December 2020 . 32875347 . 10.1007/s00213-020-05648-z . 7686291 .
- Banks ML, Bauer CT, Blough BE, Rothman RB, Partilla JS, Baumann MH, Negus SS . Abuse-related effects of dual dopamine/serotonin releasers with varying potency to release norepinephrine in male rats and rhesus monkeys . Experimental and Clinical Psychopharmacology . 22 . 3 . 274–284 . June 2014 . 24796848 . 4067459 . 10.1037/a0036595 .
- Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH . The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue . Neuropharmacology . 101 . 68–75 . February 2016 . 26362361 . 4681602 . 10.1016/j.neuropharm.2015.09.004 .
- Web site: Advantageous benzofuran compositions for mental disorders or enhancement . Google Patents . 8 December 2022 . 21 November 2024.
- Nagai F, Nonaka R, Satoh Hisashi Kamimura K . The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain . European Journal of Pharmacology . 559 . 2–3 . 132–137 . March 2007 . 17223101 . 10.1016/j.ejphar.2006.11.075 .
- Johnson CB, Walther D, Baggott MJ, Baker LE, Baumann MH . Novel Benzofuran Derivatives Induce Monoamine Release and Substitute for the Discriminative Stimulus Effects of 3,4-Methylenedioxymethamphetamine . J Pharmacol Exp Ther . 391 . 1 . 22–29 . September 2024 . 38272669 . 10.1124/jpet.123.001837 . 11413916 .
- Fantegrossi WE, Gannon BM . A "Furious" Effort to Develop Novel 3,4-Methylenedioxymethamphetamine-Like Therapeutics . J Pharmacol Exp Ther . 391 . 1 . 18–21 . September 2024 . 39293859 . 10.1124/jpet.124.002183 .
- Yu H, Rothman RB, Dersch CM, Partilla JS, Rice KC . Uptake and release effects of diethylpropion and its metabolites with biogenic amine transporters . Bioorganic & Medicinal Chemistry . 8 . 12 . 2689–2692 . December 2000 . 11131159 . 10.1016/s0968-0896(00)00210-8 .
- Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS . Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin . Synapse . 39 . 1 . 32–41 . January 2001 . 11071707 . 10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3 . 15573624 .
- Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW . Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products . Neuropsychopharmacology . 38 . 4 . 552–562 . March 2013 . 23072836 . 3572453 . 10.1038/npp.2012.204 .
- Baumann MH, Clark RD, Budzynski AG, Partilla JS, Blough BE, Rothman RB . N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy') . Neuropsychopharmacology . 30 . 3 . 550–560 . March 2005 . 15496938 . 10.1038/sj.npp.1300585 . free .
- Blough BE, Decker AM, Landavazo A, Namjoshi OA, Partilla JS, Baumann MH, Rothman RB . The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes . Psychopharmacology . 236 . 3 . 915–924 . March 2019 . 30341459 . 6475490 . 10.1007/s00213-018-5063-9 .
- Web site: Specialized combinations for mental disorders or mental enhancement . Google Patents . 7 June 2024 . 4 November 2024.
- Web site: Advantageous tryptamine compositions for mental disorders or enhancement . Google Patents . 20 September 2021 . 11 November 2024.
- Web site: Davies . Rachel A . Structure-Activity Relationship Studies of Synthetic Cathinones and Related Agents . VCU Scholars Compass . 10 July 2019 . 24 November 2024.
- Shalabi AR, Walther D, Baumann MH, Glennon RA . Deconstructed Analogues of Bupropion Reveal Structural Requirements for Transporter Inhibition versus Substrate-Induced Neurotransmitter Release . ACS Chem Neurosci . 8 . 6 . 1397–1403 . June 2017 . 28220701 . 7261150 . 10.1021/acschemneuro.7b00055 .
- Saha K, Li Y, Holy M, Lehner KR, Bukhari MO, Partilla JS, Sandtner W, Sitte HH, Baumann MH . The synthetic cathinones, butylone and pentylone, are stimulants that act as dopamine transporter blockers but 5-HT transporter substrates . Psychopharmacology (Berl) . 236 . 3 . 953–962 . March 2019 . 30345459 . 6476708 . 10.1007/s00213-018-5075-5 .
- Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A . Substituted methcathinones differ in transporter and receptor interactions . Biochem Pharmacol . 85 . 12 . 1803–1815 . June 2013 . 23583454 . 3692398 . 10.1016/j.bcp.2013.04.004 .
- Hutsell BA, Baumann MH, Partilla JS, Banks ML, Vekariya R, Glennon RA, Negus SS . Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats . Eur Neuropsychopharmacol . 26 . 2 . 288–297 . February 2016 . 26738428 . 5331761 . 10.1016/j.euroneuro.2015.12.010 .
- Schindler CW, Thorndike EB, Rice KC, Partilla JS, Baumann MH . The Supplement Adulterant β-Methylphenethylamine Increases Blood Pressure by Acting at Peripheral Norepinephrine Transporters . J Pharmacol Exp Ther . 369 . 3 . 328–336 . June 2019 . 30898867 . 6533570 . 10.1124/jpet.118.255976 .
- Del Bello F, Sakloth F, Partilla JS, Baumann MH, Glennon RA . Ethylenedioxy homologs of N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: Interactions with transporters for serotonin, dopamine, and norepinephrine . Bioorg Med Chem . 23 . 17 . 5574–5579 . September 2015 . 26233799 . 4562428 . 10.1016/j.bmc.2015.07.035 .
- Costa JL, Cunha KF, Lanaro R, Cunha RL, Walther D, Baumann MH . Analytical quantification, intoxication case series, and pharmacological mechanism of action for N-ethylnorpentylone (N-ethylpentylone or ephylone) . Drug Test Anal . 11 . 3 . 461–471 . March 2019 . 30207090 . 7316160 . 10.1002/dta.2502 .
- Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE . Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones . Neuropharmacology . 245 . 109827 . March 2024 . 38154512 . 10.1016/j.neuropharm.2023.109827 .
- Glatfelter GC, Walther D, Evans-Brown M, Baumann MH . Eutylone and Its Structural Isomers Interact with Monoamine Transporters and Induce Locomotor Stimulation . ACS Chem Neurosci . 12 . 7 . 1170–1177 . April 2021 . 33689284 . 9423000 . 10.1021/acschemneuro.0c00797 .
- Rothman RB, Clark RD, Partilla JS, Baumann MH . (+)-Fenfluramine and its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters . The Journal of Pharmacology and Experimental Therapeutics . 305 . 3 . 1191–1199 . June 2003 . 12649307 . 10.1124/jpet.103.049684 . 21164342 .
- Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL . 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro . Molecular Pharmacology . 63 . 6 . 1223–1229 . June 2003 . 12761331 . 10.1124/mol.63.6.1223 . 839426 .
- Rothman RB, Baumann MH . Therapeutic and adverse actions of serotonin transporter substrates . Pharmacology & Therapeutics . 95 . 1 . 73–88 . July 2002 . 12163129 . 10.1016/s0163-7258(02)00234-6 .
- Rothman RB, Baumann MH . Serotonin releasing agents. Neurochemical, therapeutic and adverse effects . Pharmacology, Biochemistry, and Behavior . 71 . 4 . 825–836 . April 2002 . 11888573 . 10.1016/s0091-3057(01)00669-4 . 24296122 .
- Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV . The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue . Neuropsychopharmacology . 37 . 5 . 1192–1203 . April 2012 . 22169943 . 3306880 . 10.1038/npp.2011.304 .
- Web site: Shalabi . Abdelrahman R. . Structure-Activity Relationship Studies of Bupropion and Related 3-Substituted Methcathinone Analogues at Monoamine Transporters . VCU Scholars Compass . 14 December 2017 . 24 November 2024.
- Walther D, Shalabi AR, Baumann MH, Glennon RA . Systematic Structure-Activity Studies on Selected 2-, 3-, and 4-Monosubstituted Synthetic Methcathinone Analogs as Monoamine Transporter Releasing Agents . ACS Chem Neurosci . 10 . 1 . 740–745 . January 2019 . 30354055 . 8269283 . 10.1021/acschemneuro.8b00524 .
- Web site: Sakloth . Farhana . Psychoactive synthetic cathinones (or 'bath salts'): Investigation of mechanisms of action . VCU Scholars Compass . 11 December 2015 . 24 November 2024.
- Elmore JS, Dillon-Carter O, Partilla JS, Ellefsen KN, Concheiro M, Suzuki M, Rice KC, Huestis MA, Baumann MH . Pharmacokinetic Profiles and Pharmacodynamic Effects for Methylone and Its Metabolites in Rats . Neuropsychopharmacology . 42 . 3 . 649–660 . February 2017 . 27658484 . 5240186 . 10.1038/npp.2016.213 .
- McLaughlin G, Morris N, Kavanagh PV, Power JD, Dowling G, Twamley B, O'Brien J, Talbot B, Walther D, Partilla JS, Baumann MH, Brandt SD . Synthesis, characterization and monoamine transporter activity of the new psychoactive substance mexedrone and its N-methoxy positional isomer, N-methoxymephedrone . Drug Test Anal . 9 . 3 . 358–368 . March 2017 . 27524685 . 5336524 . 10.1002/dta.2053 .
- Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK, Roth BL, Baumann MH . Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration . The Journal of Pharmacology and Experimental Therapeutics . 313 . 3 . 1361–1369 . June 2005 . 15761112 . 10.1124/jpet.104.082503 . 19802702 .
- Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA . In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates . The Journal of Pharmacology and Experimental Therapeutics . 307 . 1 . 138–145 . October 2003 . 12954796 . 10.1124/jpet.103.053975 . 19015584 .
- Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD, Baumann MH, Sitte HH . Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters . Br J Pharmacol . 173 . 17 . 2657–2668 . September 2016 . 27391165 . 4978154 . 10.1111/bph.13547 .
- Kohut SJ, Jacobs DS, Rothman RB, Partilla JS, Bergman J, Blough BE . Cocaine-like discriminative stimulus effects of "norepinephrine-preferring" monoamine releasers: time course and interaction studies in rhesus monkeys . Psychopharmacology . 234 . 23–24 . 3455–3465 . December 2017 . 28889212 . 5747253 . 10.1007/s00213-017-4731-5 .
- Rothman RB, Katsnelson M, Vu N, Partilla JS, Dersch CM, Blough BE, Baumann MH . Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain . European Journal of Pharmacology . 447 . 1 . 51–57 . June 2002 . 12106802 . 10.1016/s0014-2999(02)01830-7 .
- Web site: Forsyth . Andrea N . Synthesis and Biological Evaluation of Rigid Analogues of Methamphetamines . ScholarWorks@UNO . 22 May 2012 . 4 November 2024.
- Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB . Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes . Psychopharmacology . 231 . 21 . 4135–4144 . October 2014 . 24800892 . 4194234 . 10.1007/s00213-014-3557-7 .
- Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB . Alpha-ethyltryptamines as dual dopamine-serotonin releasers . Bioorganic & Medicinal Chemistry Letters . 24 . 19 . 4754–4758 . October 2014 . 25193229 . 4211607 . 10.1016/j.bmcl.2014.07.062 .