This table shows a summary of regular polytope counts by rank.
Rank | Finite | Euclidean | Hyperbolic | Abstract | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Compact | Paracompact | |||||||||
Convex | Star | Skew | Convex | Skew | Convex | Star | Convex | |||
1 | 1 | none | none | none | none | none | none | none | 1 | |
2 | infty | infty | none | 1 | none | 1 | none | none | infty | |
3 | 5 | 4 | 9 | 3 | 3 | infty | infty | infty | infty | |
4 | 6 | 10 | 18 | 1 | 7 | 4 | none | 11 | infty | |
5 | 3 | none | 3 | 3 | 15 | 5 | 4 | 2 | infty | |
6 | 3 | none | 3 | 1 | 7 | none | none | 5 | infty | |
7+ | 3 | none | 3 | 1 | 7 | none | none | none | infty |
There are no Euclidean regular star tessellations in any number of dimensions.
A Coxeter diagram represent mirror "planes" as nodes, and puts a ring around a node if a point is not on the plane. A dion,, is a point and its mirror image point, and the line segment between them. |
Although trivial as a polytope, it appears as the edges of polygons and other higher dimensional polytopes. It is used in the definition of uniform prisms like Schläfli symbol ×, or Coxeter diagram as a Cartesian product of a line segment and a regular polygon.
The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A -gonal regular polygon is represented by Schläfli symbol .
Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular. They use the same vertices as the convex forms, but connect in an alternate connectivity which passes around the circle more than once to be completed.
The Schläfli symbol represents a regular -gon.
Name | Triangle (2-simplex) | Square (2-orthoplex) (2-cube) | Pentagon (2-pentagonal polytope) | Hexagon | Heptagon | Octagon | ||
---|---|---|---|---|---|---|---|---|
Schläfli | ||||||||
Symmetry | D3, [3] | D4, [4] | D5, [5] | D6, [6] | D7, [7] | D8, [8] | ||
Coxeter | ||||||||
Image | ||||||||
Name | Nonagon (Enneagon) | Decagon | Hendecagon | Dodecagon | Tridecagon | Tetradecagon | ||
Schläfli | ||||||||
Symmetry | D9, [9] | D10, [10] | D11, [11] | D12, [12] | D13, [13] | D14, [14] | ||
Dynkin | ||||||||
Image | ||||||||
Name | Pentadecagon | Hexadecagon | Heptadecagon | Octadecagon | Enneadecagon | Icosagon | ...p-gon | |
Schläfli | ||||||||
Symmetry | D15, [15] | D16, [16] | D17, [17] | D18, [18] | D19, [19] | D20, [20] | Dp, [p] | |
Dynkin | ||||||||
Image |
The regular digon can be considered to be a degenerate regular polygon. It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune. A monogon could also be realised on the sphere as a single point with a great circle through it.[2] However, a monogon is not a valid abstract polytope because its single edge is incident to only one vertex rather than two.
Name | Monogon | Digon | |
---|---|---|---|
Schläfli symbol | |||
Symmetry | D1, [] | D2, [2] | |
Coxeter diagram | or | ||
Image |
There exist infinitely many regular star polytopes in two dimensions, whose Schläfli symbols consist of rational numbers . They are called star polygons and share the same vertex arrangements of the convex regular polygons.
In general, for any natural number, there are regular -pointed stars with Schläfli symbols for all such that (strictly speaking) and and are coprime (as such, all stellations of a polygon with a prime number of sides will be regular stars). Symbols where and are not coprime may be used to represent compound polygons.
Name | Pentagram | Heptagrams | Octagram | Enneagrams | Decagram | ...n-grams | |||
---|---|---|---|---|---|---|---|---|---|
Schläfli | |||||||||
Symmetry | D5, [5] | D7, [7] | D8, [8] | D9, [9], | D10, [10] | Dp, [''p''] | |||
Coxeter | |||||||||
Image |
Star polygons that can only exist as spherical tilings, similarly to the monogon and digon, may exist (for example:,,,,), however these have not been studied in detail.
There also exist failed star polygons, such as the piangle, which do not cover the surface of a circle finitely many times.[3]
In addition to the planar regular polygons there are infinitely many regular skew polygons. Skew polygons can be created via the blending operation.
The blend of two polygons and, written, can be constructed as follows:
Alternatively, the blend is the polygon where and are the generating mirrors of and placed in orthogonal subspaces.The blending operation is commutative, associative and idempotent.
Every regular skew polygon can be expressed as the blend of a unique set of planar polygons. If and share no factors then .
The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism (where is odd) or an antiprism (where is even). All polygons in 3 space have an even number of vertices and edges.
Several of these appear as the Petrie polygons of regular polyhedra.
The regular finite polygons in 4 dimensions are exactly the polygons formed as a blend of two distinct planar polygons. They have vertices lying on a Clifford torus and related by a Clifford displacement. Unlike 3-dimensional polygons, skew polygons on double rotations can include an odd-number of sides.
Polytopes of rank 3 are called polyhedra:
A regular polyhedron with Schläfli symbol, Coxeter diagrams, has a regular face type, and regular vertex figure .
A vertex figure (of a polyhedron) is a polygon, seen by connecting those vertices which are one edge away from a given vertex. For regular polyhedra, this vertex figure is always a regular (and planar) polygon.
Existence of a regular polyhedron is constrained by an inequality, related to the vertex figure's angle defect:
By enumerating the permutations, we find five convex forms, four star forms and three plane tilings, all with polygons and limited to:,,,, and .
Beyond Euclidean space, there is an infinite set of regular hyperbolic tilings.
The five convex regular polyhedra are called the Platonic solids. The vertex figure is given with each vertex count. All these polyhedra have an Euler characteristic (χ) of 2.
Name | Schläfli | Coxeter | Image (solid) | Image (sphere) | Faces | Edges | Vertices | Symmetry | Dual | |
---|---|---|---|---|---|---|---|---|---|---|
Tetrahedron (3-simplex) | 4 | 6 | 4 | Td [3,3] (*332) | (self) | |||||
Hexahedron Cube (3-cube) | 6 | 12 | 8 | Oh [4,3] (*432) | Octahedron | |||||
Octahedron (3-orthoplex) | 8 | 12 | 6 | Oh [4,3] (*432) | Cube | |||||
Dodecahedron | 12 | 30 | 20 | Ih [5,3] (*532) | Icosahedron | |||||
Icosahedron | 20 | 30 | 12 | Ih [5,3] (*532) | Dodecahedron |
In spherical geometry, regular spherical polyhedra (tilings of the sphere) exist that would otherwise be degenerate as polytopes. These are the hosohedra and their dual dihedra . Coxeter calls these cases "improper" tessellations.
The first few cases (n from 2 to 6) are listed below.
Name | Schläfli | Coxeter diagram | Image (sphere) | Faces π/p | Edges | Vertices | Symmetry | Dual | |
---|---|---|---|---|---|---|---|---|---|
Digonal hosohedron | 2 π/2 | 2 | 2 π/2 | D2h [2,2] (*222) | Self | ||||
Trigonal hosohedron | 3 π/3 | 3 | 2 | D3h [2,3] (*322) | Trigonal dihedron | ||||
Square hosohedron | 4 π/4 | 4 | 2 | D4h [2,4] (*422) | Square dihedron | ||||
Pentagonal hosohedron | 5 π/5 | 5 | 2 | D5h [2,5] (*522) | Pentagonal dihedron | ||||
Hexagonal hosohedron | 6 π/6 | 6 | 2 | D6h [2,6] (*622) | Hexagonal dihedron |
Name | Schläfli | Coxeter diagram | Image (sphere) | Faces | Edges | Vertices | Symmetry | Dual | |
---|---|---|---|---|---|---|---|---|---|
Digonal dihedron | 2 π/2 | 2 | 2 π/2 | D2h [2,2] (*222) | Self | ||||
Trigonal dihedron | 2 | 3 | 3 π/3 | D3h [3,2] (*322) | Trigonal hosohedron | ||||
Square dihedron | 2 | 4 | 4 π/4 | D4h [4,2] (*422) | Square hosohedron | ||||
Pentagonal dihedron | 2 | 5 | 5 π/5 | D5h [5,2] (*522) | Pentagonal hosohedron | ||||
Hexagonal dihedron | 2 | 6 | 6 π/6 | D6h [6,2] (*622) | Hexagonal hosohedron |
The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron and icosahedron :
As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms. The tiling images show a single spherical polygon face in yellow.
There are infinitely many failed star polyhedra. These are also spherical tilings with star polygons in their Schläfli symbols, but they do not cover a sphere finitely many times. Some examples are,,,,,, and .
Regular skew polyhedra are generalizations to the set of regular polyhedron which include the possibility of nonplanar vertex figures.
For 4-dimensional skew polyhedra, Coxeter offered a modified Schläfli symbol for these figures, with implying the vertex figure, m l-gons around a vertex, and -gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.
The regular skew polyhedra, represented by, follow this equation:
Four of them can be seen in 4-dimensions as a subset of faces of four regular 4-polytopes, sharing the same vertex arrangement and edge arrangement:
\{p,q,r\}
\{p,q\}
\{p\}
\{r\}
\{q,r\}
The existence of a regular 4-polytope
\{p,q,r\}
\{p,q\},\{q,r\}
Each will exist in a space dependent upon this expression:
\sin\left(
\pi | |
p |
\right)\sin\left(
\pi | |
r |
\right)-\cos\left(
\pi | |
q |
\right)
>0
=0
<0
These constraints allow for 21 forms: 6 are convex, 10 are nonconvex, one is a Euclidean 3-space honeycomb, and 4 are hyperbolic honeycombs.
\chi
\chi=V+F-E-C=0
The 6 convex regular 4-polytopes are shown in the table below. All these 4-polytopes have an Euler characteristic (χ) of 0.
Name | Schläfli | Coxeter | Cells | Faces | Edges | Vertices | Dual | |
---|---|---|---|---|---|---|---|---|
5-cell (4-simplex) | 5 | 10 | 10 | 5 | (self) | |||
8-cell (4-cube) (Tesseract) | 8 | 24 | 32 | 16 | 16-cell | |||
16-cell (4-orthoplex) | 16 | 32 | 24 | 8 | Tesseract | |||
24-cell | 24 | 96 | 96 | 24 | (self) | |||
120-cell | 120 | 720 | 1200 | 600 | 600-cell | |||
600-cell | 600 | 1200 | 720 | 120 | 120-cell |
Di-4-topes and hoso-4-topes exist as regular tessellations of the 3-sphere.
Regular di-4-topes (2 facets) include:,,,,,, and their hoso-4-tope duals (2 vertices):,,,,, . 4-polytopes of the form are the same as . There are also the cases which have dihedral cells and hosohedral vertex figures.
Schläfli | Coxeter | Cells π/q | Faces π/p,π/q | Edges | Vertices | Vertex figure | Symmetry | Dual | |
---|---|---|---|---|---|---|---|---|---|
4 π/3 | 6 π/3,π/3 | 4 | 2 | [2,3,3] | |||||
6 π/3 | 12 π/4,π/3 | 8 | 2 | [2,4,3] | |||||
8 π/4 | 12 π/3,π/4 | 6 | 2 | [2,4,3] | |||||
12 π/3 | 30 π/5,π/3 | 20 | 2 | [2,5,3] | |||||
20 π/5 | 30 π/3,π/5 | 12 | 2 | [2,5,3] |
There are ten regular star 4-polytopes, which are called the Schläfli–Hess 4-polytopes. Their vertices are based on the convex 120-cell and 600-cell .
Ludwig Schläfli found four of them and skipped the last six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F+V−E=2). Edmund Hess (1843–1903) completed the full list of ten in his German book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder (1883)http://www.hti.umich.edu/cgi/b/bib/bibperm?q1=ABN8623.0001.001.
There are 4 unique edge arrangements and 7 unique face arrangements from these 10 regular star 4-polytopes, shown as orthogonal projections:
There are 4 failed potential regular star 4-polytopes permutations:,,, . Their cells and vertex figures exist, but they do not cover a hypersphere with a finite number of repetitions.In addition to the 16 planar 4-polytopes above there are 18 finite skew polytopes. One of these is obtained as the Petrial of the tesseract, and the other 17 can be formed by applying the kappa operation to the planar polytopes and the Petrial of the tesseract.
5-polytopes can be given the symbol
\{p,q,r,s\}
\{p,q,r\}
\{p,q\}
\{p\}
\{s\}
\{r,s\}
\{q,r,s\}
A vertex figure (of a 5-polytope) is a 4-polytope, seen by the arrangement of neighboring vertices to each vertex.
An edge figure (of a 5-polytope) is a polyhedron, seen by the arrangement of faces around each edge.
A face figure (of a 5-polytope) is a polygon, seen by the arrangement of cells around each face.
A regular 5-polytope
\{p,q,r,s\}
\{p,q,r\}
\{q,r,s\}
The space it fits in is based on the expression:
| ||||||||||
|
+
| ||||||||||
|
<1
=1
>1
Enumeration of these constraints produce 3 convex polytopes, no star polytopes, 3 tessellations of Euclidean 4-space, and 5 tessellations of paracompact hyperbolic 4-space. The only non-convex regular polytopes for ranks 5 and higher are skews.
In dimensions 5 and higher, there are only three kinds of convex regular polytopes.
Name | Schläfli Symbol | Coxeter | k-faces | Facet type | Vertex figure | Dual | |
---|---|---|---|---|---|---|---|
n-simplex | ... | {{n+1}\choose{k+1}} | Self-dual | ||||
n-cube | ... | 2n-k{n\choosek} | n-orthoplex | ||||
n-orthoplex | ... | 2k+1{n\choose{k+1}} | n-cube |
There are also improper cases where some numbers in the Schläfli symbol are 2. For example, is an improper regular spherical polytope whenever is a regular spherical polytope, and is an improper regular spherical polytope whenever is a regular spherical polytope. Such polytopes may also be used as facets, yielding forms such as .
Name | Schläfli Symbol Coxeter | Facets | Cells | Faces | Edges | Vertices | Face figure | Edge figure | Vertex figure | |
---|---|---|---|---|---|---|---|---|---|---|
5-simplex | 6 | 15 | 20 | 15 | 6 | |||||
5-cube | 10 | 40 | 80 | 80 | 32 | |||||
5-orthoplex | 32 | 80 | 80 | 40 | 10 |
Name | Schläfli | Vertices | Edges | Faces | Cells | 4-faces | 5-faces! | χ | |
---|---|---|---|---|---|---|---|---|---|
6-simplex | 7 | 21 | 35 | 35 | 21 | 7 | 0 | ||
6-cube | 64 | 192 | 240 | 160 | 60 | 12 | 0 | ||
6-orthoplex | 12 | 60 | 160 | 240 | 192 | 64 | 0 |
Name | Schläfli | Vertices | Edges | Faces | Cells | 4-faces | 5-faces! | 6-faces | χ | |
---|---|---|---|---|---|---|---|---|---|---|
7-simplex | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 2 | ||
7-cube | 128 | 448 | 672 | 560 | 280 | 84 | 14 | 2 | ||
7-orthoplex | 14 | 84 | 280 | 560 | 672 | 448 | 128 | 2 |
Name | Schläfli | Vertices | Edges | Faces | Cells | 4-faces | 5-faces! | 6-faces | 7-faces | χ | |
---|---|---|---|---|---|---|---|---|---|---|---|
8-simplex | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 0 | ||
8-cube | 256 | 1024 | 1792 | 1792 | 1120 | 448 | 112 | 16 | 0 | ||
8-orthoplex | 16 | 112 | 448 | 1120 | 1792 | 1792 | 1024 | 256 | 0 |
Name | Schläfli | Vertices | Edges | Faces | Cells | 4-faces | 5-faces! | 6-faces | 7-faces | 8-faces | χ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9-simplex | 10 | 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 | 2 | ||
9-cube | 512 | 2304 | 4608 | 5376 | 4032 | 2016 | 672 | 144 | 18 | 2 | ||
9-orthoplex | 18 | 144 | 672 | 2016 | 4032 | 5376 | 4608 | 2304 | 512 | 2 |
Name | Schläfli | Vertices | Edges | Faces | Cells | 4-faces | 5-faces! | 6-faces | 7-faces | 8-faces | 9-faces | χ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10-simplex | 11 | 55 | 165 | 330 | 462 | 462 | 330 | 165 | 55 | 11 | 0 | ||
10-cube | 1024 | 5120 | 11520 | 15360 | 13440 | 8064 | 3360 | 960 | 180 | 20 | 0 | ||
10-orthoplex | 20 | 180 | 960 | 3360 | 8064 | 13440 | 15360 | 11520 | 5120 | 1024 | 0 |
There are no regular star polytopes of rank 5 or higher, with the exception of degenerate polytopes created by the star product of lower rank star polytopes. hosotopes and ditopes.
A projective regular -polytope exists when an original regular -spherical tessellation,, is centrally symmetric. Such a polytope is named hemi-
Even-sided regular polygons have hemi-2n-gon projective polygons, /2.
There are 4 regular projective polyhedra related to 4 of 5 Platonic solids.
The hemi-cube and hemi-octahedron generalize as hemi--cubes and hemi--orthoplexes to any rank.
Coxeter McMullen | Image | Faces | Edges | Vertices | χ | skeleton graph | ||
Hemi-cube | /2 3 | 3 | 6 | 4 | 1 | K4 | ||
---|---|---|---|---|---|---|---|---|
Hemi-octahedron | /2 3 | 4 | 6 | 3 | 1 | Double-edged K3 | ||
Hemi-dodecahedron | /2 5 | 6 | 15 | 10 | 1 | G(5,2) | ||
Hemi-icosahedron | /2 5 | 10 | 15 | 6 | 1 | K6 |
5 of 6 convex regular 4-polytopes are centrally symmetric generating projective 4-polytopes. The 3 special cases are hemi-24-cell, hemi-600-cell, and hemi-120-cell.
Coxeter symbol | McMullen Symbol | Cells | Faces | Edges | Vertices | χ | Skeleton graph | ||
Hemitesseract | /2 | 4 | 4 | 12 | 16 | 8 | 0 | K4,4 | |
---|---|---|---|---|---|---|---|---|---|
Hemi-16-cell | /2 | 4 | 8 | 16 | 12 | 4 | 0 | double-edged K4 | |
Hemi-24-cell | /2 | 6 | 12 | 48 | 48 | 12 | 0 | ||
Hemi-120-cell | /2 | 15 | 60 | 360 | 600 | 300 | 0 | ||
Hemi-600-cell | /2 | 15 | 300 | 600 | 360 | 60 | 0 |
Only 2 of 3 regular spherical polytopes are centrally symmetric for ranks 5 or higher. The corresponding regular projective polytopes are the hemi versions of the regular hypercube and orthoplex. They are tabulated below for rank 5, for example:
Name | Schläfli | 4-faces | Cells | Faces | Edges | Vertices | χ | Skeleton graph | |
---|---|---|---|---|---|---|---|---|---|
hemi-penteract | /2 | 5 | 20 | 40 | 40 | 16 | 1 | Tesseract skeleton + 8 central diagonals | |
hemi-pentacross | /2 | 16 | 40 | 40 | 20 | 5 | 1 | double-edged K5 |
An apeirotope or infinite polytope is a polytope which has infinitely many facets. An -apeirotope is an infinite -polytope: a 2-apeirotope or apeirogon is an infinite polygon, a 3-apeirotope or apeirohedron is an infinite polyhedron, etc.
There are two main geometric classes of apeirotope:[5]
The straight apeirogon is a regular tessellation of the line, subdividing it into infinitely many equal segments. It has infinitely many vertices and edges. Its Schläfli symbol is, and Coxeter diagram .
......
It exists as the limit of the -gon as tends to infinity, as follows:
Name | Monogon | Digon | Triangle | Square | Pentagon | Hexagon | Heptagon | p-gon | Apeirogon | |
---|---|---|---|---|---|---|---|---|---|---|
Schläfli | ||||||||||
Symmetry | D1, [] | D2, [2] | D3, [3] | D4, [4] | D5, [5] | D6, [6] | D7, [7] | [p] | ||
Coxeter | or | |||||||||
Image |
Apeirogons in the hyperbolic plane, most notably the regular apeirogon,, can have a curvature just like finite polygons of the Euclidean plane, with the vertices circumscribed by horocycles or hypercycles rather than circles.
Regular apeirogons that are scaled to converge at infinity have the symbol and exist on horocycles, while more generally they can exist on hypercycles.
Above are two regular hyperbolic apeirogons in the Poincaré disk model, the right one shows perpendicular reflection lines of divergent fundamental domains, separated by length λ.
A skew apeirogon in two dimensions forms a zig-zag line in the plane. If the zig-zag is even and symmetrical, then the apeirogon is regular.
Skew apeirogons can be constructed in any number of dimensions. In three dimensions, a regular skew apeirogon traces out a helical spiral and may be either left- or right-handed.
There are three regular tessellations of the plane.
There are two improper regular tilings:, an apeirogonal dihedron, made from two apeirogons, each filling half the plane; and secondly, its dual,, an apeirogonal hosohedron, seen as an infinite set of parallel lines.
There are no regular plane tilings of star polygons. There are many enumerations that fit in the plane (1/p + 1/q = 1/2), like,,,, etc., but none repeat periodically.
Tessellations of hyperbolic 2-space are hyperbolic tilings. There are infinitely many regular tilings in H2. As stated above, every positive integer pair such that 1/p + 1/q < 1/2 gives a hyperbolic tiling. In fact, for the general Schwarz triangle (p, q, r) the same holds true for 1/p + 1/q + 1/r < 1.
There are a number of different ways to display the hyperbolic plane, including the Poincaré disc model which maps the plane into a circle, as shown below. It should be recognized that all of the polygon faces in the tilings below are equal-sized and only appear to get smaller near the edges due to the projection applied, very similar to the effect of a camera fisheye lens.
There are infinitely many flat regular 3-apeirotopes (apeirohedra) as regular tilings of the hyperbolic plane, of the form, with p+q A sampling: The tilings have ideal vertices, on the edge of the Poincaré disc model. Their duals have ideal apeirogonal faces, meaning that they are inscribed in horocycles. One could go further (as is done in the table above) and find tilings with ultra-ideal vertices, outside the Poincaré disc, which are dual to tiles inscribed in hypercycles; in what is symbolised above, infinitely many tiles still fit around each ultra-ideal vertex.[6] (Parallel lines in extended hyperbolic space meet at an ideal point; ultraparallel lines meet at an ultra-ideal point.)[7] There are 2 infinite forms of hyperbolic tilings whose faces or vertex figures are star polygons: and their duals with m = 7, 9, 11, .... The tilings are stellations of the tilings while the dual tilings are facetings of the tilings and greatenings of the tilings. The patterns and continue for odd m < 7 as polyhedra: when m = 5, we obtain the small stellated dodecahedron and great dodecahedron, and when m = 3, the case degenerates to a tetrahedron. The other two Kepler–Poinsot polyhedra (the great stellated dodecahedron and great icosahedron) do not have regular hyperbolic tiling analogues. If m is even, depending on how we choose to define, we can either obtain degenerate double covers of other tilings or compound tilings. There are three regular skew apeirohedra in Euclidean 3-space, with planar faces.[8] [9] [10] They share the same vertex arrangement and edge arrangement of 3 convex uniform honeycombs. Those pure apeirohedra are: There are 31 regular skew apeirohedra with convex faces in hyperbolic 3-space with compact or paracompact symmetry:[11] There is only one non-degenerate regular tessellation of 3-space (honeycombs), : There are six improper regular tessellations, pairs based on the three regular Euclidean tilings. Their cells and vertex figures are all regular hosohedra, dihedra,, and Euclidean tilings. These improper regular tilings are constructionally related to prismatic uniform honeycombs by truncation operations. They are higher-dimensional analogues of the order-2 apeirogonal tiling and apeirogonal hosohedron. There are 15 flat regular honeycombs of hyperbolic 3-space: There are also 11 paracompact H3 honeycombs (those with infinite (Euclidean) cells and/or vertex figures):,,,,,,,,,, and . Noncompact solutions exist as Lorentzian Coxeter groups, and can be visualized with open domains in hyperbolic space (the fundamental tetrahedron having ultra-ideal vertices). All honeycombs with hyperbolic cells or vertex figures and do not have 2 in their Schläfli symbol are noncompact. There are no regular hyperbolic star-honeycombs in H3: all forms with a regular star polyhedron as cell, vertex figure or both end up being spherical. Ideal vertices now appear when the vertex figure is a Euclidean tiling, becoming inscribable in a horosphere rather than a sphere. They are dual to ideal cells (Euclidean tilings rather than finite polyhedra). As the last number in the Schläfli symbol rises further, the vertex figure becomes hyperbolic, and vertices become ultra-ideal (so the edges do not meet within hyperbolic space). In honeycombs the edges intersect the Poincaré ball only in one ideal point; the rest of the edge has become ultra-ideal. Continuing further would lead to edges that are completely ultra-ideal, both for the honeycomb and for the fundamental simplex (though still infinitely many would meet at such edges). In general, when the last number of the Schläfli symbol becomes ∞, faces of codimension two intersect the Poincaré hyperball only in one ideal point.[6] There are three kinds of infinite regular tessellations (honeycombs) that can tessellate Euclidean four-dimensional space: There are also the two improper cases and . There are three flat regular honeycombs of Euclidean 4-space: There are seven flat regular convex honeycombs of hyperbolic 4-space: There are four flat regular star honeycombs of hyperbolic 4-space: There are seven convex regular honeycombs and four star-honeycombs in H4 space. Five convex ones are compact, and two are paracompact. Five compact regular honeycombs in H4: The two paracompact regular H4 honeycombs are:, . Noncompact solutions exist as Lorentzian Coxeter groups, and can be visualized with open domains in hyperbolic space (the fundamental 5-cell having some parts inaccessible beyond infinity). All honeycombs which are not shown in the set of tables below and do not have 2 in their Schläfli symbol are noncompact. There are four regular star-honeycombs in H4 space, all compact: There is only one flat regular honeycomb of Euclidean 5-space: (previously listed above as tessellations) There are five flat regular regular honeycombs of hyperbolic 5-space, all paracompact: (previously listed above as tessellations) The hypercubic honeycomb is the only family of regular honeycombs that can tessellate each dimension, five or higher, formed by hypercube facets, four around every ridge. In E5, there are also the improper cases,,,,, and . In En, and are always improper Euclidean tessellations. There are 5 regular honeycombs in H5, all paracompact, which include infinite (Euclidean) facets or vertex figures:,,,, and . There are no compact regular tessellations of hyperbolic space of dimension 5 or higher and no paracompact regular tessellations in hyperbolic space of dimension 6 or higher. Since there are no regular star n-polytopes for n ≥ 5, that could be potential cells or vertex figures, there are no more hyperbolic star honeycombs in Hn for n ≥ 5. There are no regular compact or paracompact tessellations of hyperbolic space of dimension 6 or higher. However, any Schläfli symbol of the form not covered above (p,q,r,s,... natural numbers above 2, or infinity) will form a noncompact tessellation of hyperbolic n-space.[6] The abstract polytopes arose out of an attempt to study polytopes apart from the geometrical space they are embedded in. They include the tessellations of spherical, Euclidean and hyperbolic space, and of other manifolds. There are infinitely many of every rank greater than 1. See this atlas for a sample. Some notable examples of abstract regular polytopes that do not appear elsewhere in this list are the 11-cell,, and the 57-cell,, which have regular projective polyhedra as cells and vertex figures. The elements of an abstract polyhedron are its body (the maximal element), its faces, edges, vertices and the null polytope or empty set. These abstract elements can be mapped into ordinary space or realised as geometrical figures. Some abstract polyhedra have well-formed or faithful realisations, others do not. A flag is a connected set of elements of each rank - for a polyhedron that is the body, a face, an edge of the face, a vertex of the edge, and the null polytope. An abstract polytope is said to be regular if its combinatorial symmetries are transitive on its flags - that is to say, that any flag can be mapped onto any other under a symmetry of the polyhedron. Abstract regular polytopes remain an active area of research. Five such regular abstract polyhedra, which can not be realised faithfully and symmetrically, were identified by H. S. M. Coxeter in his book Regular Polytopes (1977) and again by J. M. Wills in his paper "The combinatorially regular polyhedra of index 2" (1987).[12] They are all topologically equivalent to toroids. Their construction, by arranging n faces around each vertex, can be repeated indefinitely as tilings of the hyperbolic plane. In the diagrams below, the hyperbolic tiling images have colors corresponding to those of the polyhedra images. These occur as dual pairs as follows:Hyperbolic star-tilings
Name Schläfli Coxeter diagram Image Face type Vertex figure Density Symmetry Dual Order-7 heptagrammic tiling 3
[7,3]Heptagrammic-order heptagonal tiling Heptagrammic-order heptagonal tiling 3
[7,3]Order-7 heptagrammic tiling Order-9 enneagrammic tiling 3
[9,3]Enneagrammic-order enneagonal tiling Enneagrammic-order enneagonal tiling 3
[9,3]Order-9 enneagrammic tiling Order-11 hendecagrammic tiling 3
[11,3]Hendecagrammic-order hendecagonal tiling Hendecagrammic-order hendecagonal tiling 3
[11,3]Order-11 hendecagrammic tiling Order-p p-grammic tiling 3
[p,3]p-grammic-order p-gonal tiling p-grammic-order p-gonal tiling 3
[p,3]Order-p p-grammic tiling Skew apeirohedra in Euclidean 3-space
Allowing for skew faces, there are 24 regular apeirohedra in Euclidean 3-space. These include 12 apeirhedra created by blends with the Euclidean apeirohedra, and 12 pure apeirohedra, including the 3 above, which cannot be expressed as a non-trivial blend.Skew apeirohedra in hyperbolic 3-space
4-apeirotopes
Tessellations of Euclidean 3-space
Improper tessellations of Euclidean 3-space
Schläfli Coxeter
diagramCell
typeFace
typeEdge
figureVertex
figureTessellations of hyperbolic 3-space
Tessellations of hyperbolic 3-space can be called hyperbolic honeycombs. There are 15 hyperbolic honeycombs in H3, 4 compact and 11 paracompact.Name Schläfli
SymbolCoxeter Cell
typeFace
typeEdge
figureVertex
figureχ Dual Icosahedral honeycomb 0 Self-dual Order-5 cubic honeycomb 0 Order-4 dodecahedral honeycomb 0 Order-5 dodecahedral honeycomb 0 Self-dual Name Schläfli
SymbolCoxeter Cell
typeFace
typeEdge
figureVertex
figureχ Dual Order-6 tetrahedral honeycomb 0 Hexagonal tiling honeycomb 0 Order-4 octahedral honeycomb 0 Square tiling honeycomb 0 Triangular tiling honeycomb 0 Self-dual Order-6 cubic honeycomb 0 Order-4 hexagonal tiling honeycomb 0 Order-4 square tiling honeycomb 0 Self-dual Order-6 dodecahedral honeycomb 0 Order-5 hexagonal tiling honeycomb 0 Order-6 hexagonal tiling honeycomb 0 Self-dual 5-apeirotopes
Tessellations of Euclidean 4-space
Name Schläfli
SymbolFacet
typeCell
typeFace
typeFace
figureEdge
figureVertex
figureDual Tesseractic honeycomb Self-dual 16-cell honeycomb 24-cell honeycomb Tessellations of hyperbolic 4-space
Name Schläfli
SymbolFacet
typeCell
typeFace
typeFace
figureEdge
figureVertex
figureDual Order-5 5-cell honeycomb 120-cell honeycomb Order-5 tesseractic honeycomb Order-4 120-cell honeycomb Order-5 120-cell honeycomb Self-dual Name Schläfli
SymbolFacet
typeCell
typeFace
typeFace
figureEdge
figureVertex
figureDual Order-4 24-cell honeycomb Cubic honeycomb honeycomb Star tessellations of hyperbolic 4-space
Name Schläfli
SymbolFacet
typeCell
typeFace
typeFace
figureEdge
figureVertex
figureDual Density Small stellated 120-cell honeycomb 5 Pentagrammic-order 600-cell honeycomb 5 Order-5 icosahedral 120-cell honeycomb 10 Great 120-cell honeycomb 10 6-apeirotopes
Tessellations of Euclidean 5-space
Name Schläfli Facet
typeVertex
figureDual Square tiling Self-dual Cubic honeycomb Self-dual Tesseractic honeycomb Self-dual 5-cube honeycomb Self-dual 6-cube honeycomb Self-dual 7-cube honeycomb Self-dual 8-cube honeycomb Self-dual n-hypercubic honeycomb Self-dual Tessellations of hyperbolic 5-space
Name Schläfli
SymbolFacet
type4-face
typeCell
typeFace
typeCell
figureFace
figureEdge
figureVertex
figureDual 5-orthoplex honeycomb 24-cell honeycomb honeycomb 16-cell honeycomb honeycomb self-dual Order-4 24-cell honeycomb honeycomb Tesseractic honeycomb honeycomb Apeirotopes of rank 7 or more
Tessellations of hyperbolic 6-space and higher
Abstract polytopes
See also
Notes
Subnotes
References
Citations
External links
Notes and References