List of nonlinear partial differential equations explained

See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.

A–F

NameDimEquationApplications
Bateman-Burgers equation1+1

\displaystyleut+uux=\nuuxx

Fluid mechanics
1+1

\displaystyleut+ux+uux-uxxt=0

Fluid mechanics
1+1

\displaystyleut+Huxx+uux=0

internal waves in deep water
Boomeron1+1

\displaystyleut=bvx, \displaystylevxt=uxxb+a x vx- 2v x (v x b)

Solitons
Boltzmann equation1+6
\partialfi
\partialt

+

pi
mi

\nablafi+F ⋅

\partialfi
\partialpi

=\left(

\partialfi
\partialt

\right)coll,

\left(\partialfi
\partialt

\right)coll=

n
\sum
j=1

\iintgijIij(gij,\Omega)[f'if'j-fifj]d\Omegad3p'

Statistical mechanics
Born–Infeld1+1

\displaystyle

2)u
(1-u
xx

+2uxutuxt

2)u
-(1+u
tt

=0

Electrodynamics
Boussinesq1+1

\displaystyleutt-uxx-uxxxx-

2)
3(u
xx

=0

Fluid mechanics
Boussinesq type equation1+1

\displaystyleutt-uxx-2\alpha(uux)x-\betauxxtt=0

Fluid mechanics
Buckmaster1+1

\displaystyle

4)
u
xx
3)
+(u
x
Thin viscous fluid sheet flow
Cahn–Hilliard equationAny

\displaystylect=D\nabla2\left(c3-c-\gamma\nabla2c\right)

Phase separation
Calabi flowAny
\partialgij
\partialt

=(\DeltaR)gij

Calabi–Yau manifolds
Camassa–Holm1+1

ut+2\kappaux-uxxt+3uux=2uxuxx+uuxxx

Peakons
Carleman1+1

\displaystyleut+u

2-u
x=v
2=v
x-v

t

Cauchy momentumany

\displaystyle\rho\left(

\partialv
\partialt

+v\nablav\right)=\nabla\sigma+\rhof

Momentum transport
Chafee–Infante equation

ut-uxx(u3-u)=0

Clairaut equationany

xDu+f(Du)=u

Differential geometry
Clarke's equation1+1

(\thetat-\gamma\deltae\theta)tt

2(\theta
=\nabla
t-\delta

e\theta)

Combustion
Complex Monge–AmpèreAny

\displaystyle\det(\partiali\bar\varphi)=

lower order terms
Calabi conjecture
Constant astigmatism1+1

zyy+\left(

1
z

\right)xx+2=0

Differential geometry
Davey–Stewartson1+2

\displaystyleiut+c0uxx+uyy=c1

u^2 u + c_2 u \varphi_x, \quad\displaystyle \varphi_ + c_3 \varphi_ = (u^2)_xFinite depth waves
Degasperis–Procesi1+1

\displaystyleut-uxxt+4uux=3uxuxx+uuxxx

Peakons
Dispersive long wave1+1

\displaystyle

2-u
u
x+2w)

x

,

wt=(2uw+wx)x

Drinfeld–Sokolov–Wilson1+1

\displaystyleut=3wwx, \displaystylewt=2wxxx+2uwx+uxw

Dym equation1+1

\displaystyleut=

3u
u
xxx

.

Solitons
Eckhaus equation1+1

iut+uxx+2

u^2_xu+u^4u=0Integrable systems
Eikonal equationany

\displaystyle

\nabla u(x)=F(x), \ x\in \Omegaoptics
Einstein field equationsAny

\displaystyleR\mu\nu-{style1\over2}Rg\mu\nug\mu\nu=

8\piG
c4

T\mu\nu

General relativity
Erdogan–Chatwin equation1+1

\varphit=(\varphix+

3)
a\varphi
x
Fluid dynamics
Ernst equation2

\displaystyle\Re(u)(urr+ur/r+uzz)=

2
(u
z)
Estevez–Mansfield–Clarkson equation

Utyyy+\betaUyUyt+\betaUyyUt+Utt=0inwhichU=u(x,y,t)

Euler equations1+3
\partial\rho
\partialt

+\nabla(\rhou)=0,\rho\left(

\partialu
\partialt

+v\nablav\right)=-\nablap+\rhof,

\partials
\partialt

+v\nablas=0

non-viscous fluids
Fisher's equation1+1

\displaystyleut=u(1-u)+uxx

Gene propagation
FitzHugh–Nagumo model1+1

\displaystyleut=uxx+u(u-a)(1-u)+w, \displaystylewt=\varepsilonu

Biological neuron model
Föppl–von Kármán equations
Eh3
12(1-\nu2)

\nabla4w-h

\partial
\partialx\beta

\left(\sigma\alpha\beta

\partialw
\partialx\alpha

\right)=P,

\partial\sigma\alpha\beta
\partialx\beta

=0

Solid Mechanics
Fujita–Storm equation u_=a (u^ u_x)_x

G–K

NameDimEquationApplications
G equation1+3

Gt+v\nablaG=SL(G)

\nabla Gturbulent combustion
Generic scalar transport1+3

\displaystyle\varphit+\nablaf(t,x,\varphi,\nabla\varphi)=g(t,x,\varphi)

transport
Ginzburg–Landau1+3

\displaystyle\alpha\psi+\beta

\psi^2 \psi + \tfrac \left(-i\hbar\nabla - 2e\mathbf \right)^2 \psi = 0 Superconductivity
Gross–Pitaevskii

\displaystylei\partialt\psi=\left(-\tfrac12\nabla2+V(x)+g

\psi^2 \right) \psi Bose–Einstein condensate
Gyrokinetics equation

{\displaystyle{

\partialhs
\partialt
}+\left(v_
+_+\left\langle _\right\rangle _\right)\cdot _h_-\sum _\left\langle C\left[h_{s},h_{s'}\right]\right\rangle _=-\left\langle _\right\rangle _\cdot \psi }
Microturbulence in plasma
Guzmán

\displaystyleJt+gJ

2J
xx
2+f=0
\sigma
x)
Hamilton–Jacobi–Bellman equation for risk aversion
Hartree equationAny

\displaystylei\partialtu+\Deltau=\left(\pm

x^ u^2 \right) u
Hasegawa–Mima1+3

\displaystyle0=

\partial
\partialt

\left(\nabla2\varphi-\varphi\right)-\left[\left(\nabla\varphi x \hat{z

} \right)\cdot \nabla \right] \left[\nabla^2 \varphi - \ln \left(\frac{n_0}{\omega_{ci}}\right)\right]
Turbulence in plasma
Heisenberg ferromagnet1+1

\displaystyleSt=S\wedgeSxx.

Magnetism
Hicks1+1

\psirr-\psir/r+\psizz=r2dH/d\psi-\Gammad\Gamma/d\psi

Fluid dynamics
Hunter–Saxton1+1

\displaystyle\left(ut+uux\right)x=\tfrac{1}{2}

2
u
x
Liquid crystals
Ishimori equation1+2

\displaystyleSt=S\wedge\left(Sxx+Syy\right)+uxSy+uySx,\displaystyleuxx-\alpha2uyy=-2\alpha2S\left(Sx\wedgeSy\right)

Integrable systems
1+2

\displaystyle\partialx\left(\partialtu+u\partialx

2\partial
u+\varepsilon
xxx

u\right)\partialyyu=0

Shallow water waves
1+3

\displaystyleht=\nu\nabla2h+λ(\nablah)2/2+η

Stochastics
von Karman2

\displaystyle\nabla4u=E\left

2-w
(w
xx

wyy\right),\nabla4w=a+b\left(uyywxx+uxxwyy-2uxywxy\right)

Kaup1+1

\displaystylefx=2fgc(x-t)=gt

Kaup–Kupershmidt1+1

\displaystyleut=uxxxxx+10uxxxu+25uxx

2u
u
x
Integrable systems
Klein–Gordon–Maxwellany

\displaystyle\nabla2s=\left(

\mathbf a^2+1 \right)s, \quad \nabla^2\mathbf a =\nabla(\nabla\cdot\mathbf a)+s^2\mathbf a
Klein–Gordon (nonlinear)any

\nabla2uup=0

Relativistic quantum mechanics
Khokhlov–Zabolotskaya1+2

\displaystyleuxt-(uux)x=uyy

Kompaneyets1+1

\displaystylent=x-2

2+n)]
[x
x
Physical kinetics
Korteweg–de Vries (KdV)1+1

\displaystyleut+uxxx-6uux=0

Shallow waves, Integrable systems
KdV (cylindrical)1+1

\displaystyle\partialtu+

3
\partial
x

u-6u\partialxu+u/2t=0

-->
KdV (deformed)1+1

\displaystyle\partialtu+\left(uxx-2η

2/2
u
x

\left(η+u2\right)\right)x=0

K(n,n) equation)

ut

n)
+a(u
x
n)
+(u
xxx

=0

KdV (generalized)1+1

\displaystyle\partialtu+

3
\partial
x

u+\partialxf(u)=0

KdV (modified)1+1

\displaystyle\partialtu+

3
\partial
x

u\pm

2\partial
6u
x

u=0

-->
KdV (modified modified)1+1

\displaystyleut+uxxx-\tfrac{1}{8}

3
u
x

+ux\left(Aeau+B+Ce-au\right)=0

-->
KdV (spherical)1+1

\displaystyle\partialtu+

3
\partial
x

u-6\partialxu+u/t=0

-->
KdV (super)1+1

\displaystyleut=6uux-uxxx+3wwxx,wt=3uxw+6uwx-4wxxx

KdV (transitional)1+1

\displaystyle\partialtu+

3
\partial
x

u-6f(t)u\partialxu=0

-->
KdV (variable coefficients)1+1

\displaystyle\partialtu+\beta

3
t
x

u+\alpha

nu\partial
t
x

u=0

-->
KdV (Burgers)1+1

\displaystyle\partialtu+

3
\mu\partial
x

u+2u\partialxu-\nuuxx=0

-->
There are more minor variations listed in the article on KdV equations.
Kuramoto–Sivashinsky equation

\displaystyle

4u+\nabla
u
t+\nabla

2u+\tfrac{1}{2}

\nabla u^2=0Combustion

L–Q

NameDimEquationApplications
Landau–Lifshitz model1+n

\displaystyle

\partialS
\partialt

=S\wedge

\sum
i\partial2S
\partial
2
x
i

+S\wedgeJS

Magnetic field in solids
Lin–Tsien equation1+2

\displaystyle2utx+uxuxx-uyy=0

Liouville equationany

\displaystyle\nabla2u+eλ=0

Liouville–Bratu–Gelfand equationany

\nabla2\psi+λe\psi=0

combustion, astrophysics
Logarithmic Schrödinger equationany

i

\partial\psi
\partialt

+\Delta\psi+\psiln

\psi^2 = 0. Superfluids, Quantum gravity
Minimal surface3

\displaystyle\operatorname{div}(Du/\sqrt{1+|Du|2})=0

minimal surfaces
any

\displaystyle\det(\partialij\varphi)=

lower order terms
Navier–Stokes
(and its derivation)
1+3

\displaystyle\rho\left(

\partialvi
\partialt

+vj

\partialvi
\partialxj

\right)=-

\partialp
\partialxi

+

\partial
\partialxj

\left[\mu\left(

\partialvi
\partialxj

+

\partialvj
\partialxi

\right)+λ

\partialvk
\partialxk

\right]+\rhofi


+ mass conservation:
\partial\rho
\partialt

+

\partial\left(\rhovi\right)
\partialxi

=0


+ an equation of state to relate p and ρ, e.g. for an incompressible flow:
\partialvi
\partialxi

=0

Fluid flow, gas flow
Nonlinear Schrödinger (cubic)1+1

\displaystylei\partialt\psi=-{1\over

2
2}\partial
x\psi+\kappa
\psi^2 \psioptics, water waves
Nonlinear Schrödinger (derivative)1+1

\displaystylei\partialt\psi=-{1\over

2
2}\partial
x\psi+\partial

x(i\kappa

\psi^2 \psi)optics, water waves
Omega equation1+3

\displaystyle\nabla2\omega+

f2
\sigma
\partial2\omega
\partialp2

\displaystyle=

f
\sigma
\partial
\partialp

Vg\nablap(\zetag+f)+

R
\sigmap
2
\nabla
p(V

g\nablapT)

atmospheric physics
Plateau2

\displaystyle

2)u
(1+u
xx

-2uxuyuxy

2)u
+(1+u
yy

=0

minimal surfaces
Pohlmeyer–Lund–Regge2

\displaystyleuxx-uyy\pm\sinu\cosu+

\cosu
\sin3u
2)=0,
(v
y

\displaystyle

2u)
(v
x

=

2
(v
y\cot

u)y

Porous medium1+n

\displaystyle

\gamma)
u
t=\Delta(u
diffusion
Prandtl1+2

\displaystyleut+uux+vuy=Ut+UU

x+\mu
\rho

uyy

,

\displaystyleux+vy=0

boundary layer

R–Z, α–ω

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "List of nonlinear partial differential equations".

Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2025, A B Cryer, All Rights Reserved. Cookie policy.

NameDimEquationApplications
Rayleigh1+1

\displaystyleutt-uxx=\varepsilon(ut-u

3)
t
Any

\displaystyle\partialtgij=-2Rij

Poincaré conjecture
Richards equation1+3

\displaystyle\thetat=\left[K(\theta)\left(\psiz+1\right)\right]z

Variably saturated flow in porous media
Rosenau–Hyman1+1

ut+a

n\right)
\left(u
x

+

n\right)
\left(u
xxx

=0

compacton solutions
Sawada–Kotera1+1

\displaystyle

2u
u
x+15u

xuxx+15uuxxx+uxxxxx=0

Sack–Schamel equation1+1

\ddotV+\partialη\left[

1
1-\ddotV

\partialη\left(

1-\ddotV
V

\right)\right]=0

plasmas
Schamel equation1+1

\phit+(1+b\sqrt\phi)\phix+\phixxx=0

plasmas, solitons, optics
SchlesingerAny

\displaystyle{\partialAi\over\partialtj}{\left[Ai,Aj\right]\overti-tj},ij,{\partialAi\over\partialti}=-

n
\sum
j=1\atopji

{\left[Ai,Aj\right]\overti-tj},1\leqi,j\leqn

isomonodromic deformations
1+3

\displaystyleDA\varphi=0,   

+
F
A=\sigma(\varphi)
Seiberg–Witten invariants, QFT
Shallow water1+2

\displaystyleηt+(ηu)x+(ηv)y=0,(ηu)t+\left(ηu2+

1
2

gη2\right)x+(ηuv)y=0,(ηv)t+(ηuv)x+\left(ηv2+

1
2

gη

2\right)
y

=0

shallow water waves
Sine–Gordon1+1

\displaystyle\varphitt-\varphixx+\sin\varphi=0

Solitons, QFT
Sinh–Gordon1+1

\displaystyleuxt=\sinhu

Solitons, QFT
Sinh–Poisson1+n

\displaystyle\nabla2u+\sinhu=0

Fluid Mechanics
Swift–Hohenbergany

\displaystyleut=ru-(1+\nabla2)2u+N(u)

pattern forming
Thomas2

\displaystyleuxy+\alphaux+\betauy+\gammauxuy=0

Thirring1+1

\displaystyleiux+v+u

v^2=0,

\displaystyleivt+u+v

u^2=0Dirac field, QFT
Toda latticeany

\displaystyle\nabla2logun=un+1-2un+un-1

1+2

\displaystyle(\partialt+\partial

3)v+\partial
z(uv)+\partial

\bar(uw)=0

,

\displaystyle\partial\baru=3\partialzv

,

\displaystyle\partialzw=3\partial\barv

shallow water waves
Vorticity equation
\partial\boldsymbol\omega
\partialt

+(u\nabla)\boldsymbol\omega=(\boldsymbol\omega\nabla)u-\boldsymbol\omega(\nablau)+

1
\rho2

\nabla\rho x \nablap+\nabla x \left(

\nabla\tau
\rho

\right)+\nabla x \left(

f
\rho

\right),\boldsymbol{\omega}=\nabla x u

Fluid Mechanics
Wadati–Konno–Ichikawa–Schimizu1+1

\displaystyleiut+((1+

u^2)^u)_=0
WDVV equationsAny

\displaystyle

n\left({\partial
\sum
\sigma,\tau=1

3F\over\partialt\alphat\betat\sigma}η\sigma{\partial3F\over\partialt\mut\nut\tau}\right)

\displaystyle=

n\left({\partial
\sum
\sigma,\tau=1

3F\over\partialt\alphat\nut\sigma}η\sigma{\partial3F\over\partialt\mut\betat\tau}\right)

Topological field theory, QFT
WZW model1+1

Sk(\gamma)=-

k
8\pi
\int
S2

d2xl{K}(\gamma-1\partial\mu\gamma,\gamma-1\partial\mu\gamma)+2\pikSWZ(\gamma)

SWZ(\gamma)=-

1
48\pi2
\int
B3

d3y\varepsilonijkl{K}\left(\gamma-1

\partial\gamma
\partialyi

,\left[ \gamma-1

\partial\gamma
\partialyj

, \gamma-1

\partial\gamma
\partialyk

\right] \right)

QFT
Whitham equation1+1

\displaystyleηt+\alphaηηx+

+infty
\int
-infty

K(x-\xi)η\xi(\xi,t)d\xi=0

water waves
Williams spray equation
\partialfj
\partialt

+\nablax(vfj)+\nablav(Fjfj)=-

\partial
\partialr

(Rjfj)-

\partial
\partialT

(Ejfj)+Qj+\Gammaj,Fj=

v

,Rj=

r

,Ej=

T

,j=1,2,...,M

Combustion
Yamaben

\displaystyle\Delta\varphi+h(x)\varphi=λf(x)\varphi(n+2)/(n-2)

Differential geometry
Any

\displaystyleD\muF\mu\nu=0,F\mu=A\mu,-A\nu,+[A\mu,A\nu]

Gauge theory, QFT
Yang–Mills (self-dual/anti-self-dual)4

F\alpha=\pm\varepsilon\alphaF\mu,F\mu=A\mu,-A\nu,+[A\mu,A\nu]

Yukawa1+n

\displaystylei

\partial
t

u+\Deltau=-Au,\displaystyle\BoxA=

2
m

A+

u^2 Meson-nucleon interactions, QFT
Zakharov system1+3

\displaystylei

\partial
t

u+\Deltau=un,\displaystyle\Boxn=-\Delta(

u^2_)Langmuir waves
Zakharov–Schulman1+3

\displaystyleiut+L1u=\varphiu,\displaystyleL2\varphi=L3(

u ^2)Acoustic waves
Zeldovich–Frank-Kamenetskii equation1+3

\displaystyleut=D\nabla2u+

\beta2
2

u(1-u)e-\beta(1-u)

Combustion
Zoomeron1+1

\displaystyle(uxt/u)tt-(uxt/u)xx

2)
+2(u
xt

=0

Solitons
φ4 equation1+1

\displaystyle\varphitt-\varphixx-\varphi+\varphi3=0

QFT
σ-model1+1

\displaystyle{v}xt+({v}x{v}t){v}=0

Harmonic maps, integrable systems, QFT