See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.
Name | Dim | Equation | Applications | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bateman-Burgers equation | 1+1 | \displaystyleut+uux=\nuuxx | Fluid mechanics | |||||||||||||||||||||
1+1 | \displaystyleut+ux+uux-uxxt=0 | Fluid mechanics | ||||||||||||||||||||||
1+1 | \displaystyleut+Huxx+uux=0 | internal waves in deep water | ||||||||||||||||||||||
Boomeron | 1+1 | \displaystyleut=b ⋅ vx, \displaystylevxt=uxxb+a x vx- 2v x (v x b) | Solitons | |||||||||||||||||||||
Boltzmann equation | 1+6 |
+
⋅ \nablafi+F ⋅
=\left(
\right)coll,
\right)coll=
\iintgijIij(gij,\Omega)[f'if'j-fifj]d\Omegad3p' | Statistical mechanics | |||||||||||||||||||||
Born–Infeld | 1+1 | \displaystyle
+2uxutuxt
=0 | Electrodynamics | |||||||||||||||||||||
Boussinesq | 1+1 | \displaystyleutt-uxx-uxxxx-
=0 | Fluid mechanics | |||||||||||||||||||||
Boussinesq type equation | 1+1 | \displaystyleutt-uxx-2\alpha(uux)x-\betauxxtt=0 | Fluid mechanics | |||||||||||||||||||||
Buckmaster | 1+1 | \displaystyle
| Thin viscous fluid sheet flow | |||||||||||||||||||||
Cahn–Hilliard equation | Any | \displaystylect=D\nabla2\left(c3-c-\gamma\nabla2c\right) | Phase separation | |||||||||||||||||||||
Calabi flow | Any |
=(\DeltaR)gij | Calabi–Yau manifolds | |||||||||||||||||||||
Camassa–Holm | 1+1 | ut+2\kappaux-uxxt+3uux=2uxuxx+uuxxx | Peakons | |||||||||||||||||||||
Carleman | 1+1 | \displaystyleut+u
t | ||||||||||||||||||||||
Cauchy momentum | any | \displaystyle\rho\left(
+v ⋅ \nablav\right)=\nabla ⋅ \sigma+\rhof | Momentum transport | |||||||||||||||||||||
Chafee–Infante equation | ut-uxx+λ(u3-u)=0 | |||||||||||||||||||||||
Clairaut equation | any | x ⋅ Du+f(Du)=u | Differential geometry | |||||||||||||||||||||
Clarke's equation | 1+1 | (\thetat-\gamma\deltae\theta)tt
e\theta) | Combustion | |||||||||||||||||||||
Complex Monge–Ampère | Any | \displaystyle\det(\partiali\bar\varphi)= | Calabi conjecture | |||||||||||||||||||||
Constant astigmatism | 1+1 | zyy+\left(
\right)xx+2=0 | Differential geometry | |||||||||||||||||||||
Davey–Stewartson | 1+2 | \displaystyleiut+c0uxx+uyy=c1 | u | ^2 u + c_2 u \varphi_x, \quad\displaystyle \varphi_ + c_3 \varphi_ = ( | u | ^2)_x | Finite depth waves | |||||||||||||||||
Degasperis–Procesi | 1+1 | \displaystyleut-uxxt+4uux=3uxuxx+uuxxx | Peakons | |||||||||||||||||||||
Dispersive long wave | 1+1 | \displaystyle
x wt=(2uw+wx)x | ||||||||||||||||||||||
Drinfeld–Sokolov–Wilson | 1+1 | \displaystyleut=3wwx, \displaystylewt=2wxxx+2uwx+uxw | ||||||||||||||||||||||
Dym equation | 1+1 | \displaystyleut=
. | Solitons | |||||||||||||||||||||
Eckhaus equation | 1+1 | iut+uxx+2 | u | ^2_xu+ | u | ^4u=0 | Integrable systems | |||||||||||||||||
Eikonal equation | any | \displaystyle | \nabla u(x) | =F(x), \ x\in \Omega | optics | |||||||||||||||||||
Einstein field equations | Any | \displaystyleR\mu\nu-{style1\over2}Rg\mu\nu+Λg\mu\nu=
T\mu\nu | General relativity | |||||||||||||||||||||
Erdogan–Chatwin equation | 1+1 | \varphit=(\varphix+
| Fluid dynamics | |||||||||||||||||||||
Ernst equation | 2 | \displaystyle\Re(u)(urr+ur/r+uzz)=
| ||||||||||||||||||||||
Estevez–Mansfield–Clarkson equation | Utyyy+\betaUyUyt+\betaUyyUt+Utt=0inwhichU=u(x,y,t) | |||||||||||||||||||||||
Euler equations | 1+3 |
+\nabla ⋅ (\rhou)=0, \rho\left(
+v ⋅ \nablav\right)=-\nablap+\rhof,
+v ⋅ \nablas=0 | non-viscous fluids | |||||||||||||||||||||
Fisher's equation | 1+1 | \displaystyleut=u(1-u)+uxx | Gene propagation | |||||||||||||||||||||
FitzHugh–Nagumo model | 1+1 | \displaystyleut=uxx+u(u-a)(1-u)+w, \displaystylewt=\varepsilonu | Biological neuron model | |||||||||||||||||||||
Föppl–von Kármán equations |
\nabla4w-h
\left(\sigma\alpha\beta
\right)=P,
=0 | Solid Mechanics | ||||||||||||||||||||||
Fujita–Storm equation |
Name | Dim | Equation | Applications | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G equation | 1+3 | Gt+v ⋅ \nablaG=SL(G) | \nabla G | turbulent combustion | |||||||||||
Generic scalar transport | 1+3 | \displaystyle\varphit+\nabla ⋅ f(t,x,\varphi,\nabla\varphi)=g(t,x,\varphi) | transport | ||||||||||||
Ginzburg–Landau | 1+3 | \displaystyle\alpha\psi+\beta | \psi | ^2 \psi + \tfrac \left(-i\hbar\nabla - 2e\mathbf \right)^2 \psi = 0 | Superconductivity | ||||||||||
Gross–Pitaevskii | \displaystylei\partialt\psi=\left(-\tfrac12\nabla2+V(x)+g | \psi | ^2 \right) \psi | Bose–Einstein condensate | |||||||||||
Gyrokinetics equation | {\displaystyle{
| Microturbulence in plasma | |||||||||||||
Guzmán | \displaystyleJt+gJ
| Hamilton–Jacobi–Bellman equation for risk aversion | |||||||||||||
Hartree equation | Any | \displaystylei\partialtu+\Deltau=\left(\pm | x | ^ | u | ^2 \right) u | |||||||||
Hasegawa–Mima | 1+3 | \displaystyle0=
\left(\nabla2\varphi-\varphi\right)-\left[\left(\nabla\varphi x \hat{z | Turbulence in plasma | ||||||||||||
Heisenberg ferromagnet | 1+1 | \displaystyleSt=S\wedgeSxx. | Magnetism | ||||||||||||
Hicks | 1+1 | \psirr-\psir/r+\psizz=r2dH/d\psi-\Gammad\Gamma/d\psi | Fluid dynamics | ||||||||||||
Hunter–Saxton | 1+1 | \displaystyle\left(ut+uux\right)x=\tfrac{1}{2}
| Liquid crystals | ||||||||||||
Ishimori equation | 1+2 | \displaystyleSt=S\wedge\left(Sxx+Syy\right)+uxSy+uySx, \displaystyleuxx-\alpha2uyy=-2\alpha2S ⋅ \left(Sx\wedgeSy\right) | Integrable systems | ||||||||||||
1+2 | \displaystyle\partialx\left(\partialtu+u\partialx
u\right)+λ\partialyyu=0 | Shallow water waves | |||||||||||||
1+3 | \displaystyleht=\nu\nabla2h+λ(\nablah)2/2+η | Stochastics | |||||||||||||
von Karman | 2 | \displaystyle\nabla4u=E\left
wyy\right), \nabla4w=a+b\left(uyywxx+uxxwyy-2uxywxy\right) | |||||||||||||
Kaup | 1+1 | \displaystylefx=2fgc(x-t)=gt | |||||||||||||
Kaup–Kupershmidt | 1+1 | \displaystyleut=uxxxxx+10uxxxu+25uxx
| Integrable systems | ||||||||||||
Klein–Gordon–Maxwell | any | \displaystyle\nabla2s=\left( | \mathbf a | ^2+1 \right)s, \quad \nabla^2\mathbf a =\nabla(\nabla\cdot\mathbf a)+s^2\mathbf a | |||||||||||
Klein–Gordon (nonlinear) | any | \nabla2u+λup=0 | Relativistic quantum mechanics | ||||||||||||
Khokhlov–Zabolotskaya | 1+2 | \displaystyleuxt-(uux)x=uyy | |||||||||||||
Kompaneyets | 1+1 | \displaystylent=x-2
| Physical kinetics | ||||||||||||
Korteweg–de Vries (KdV) | 1+1 | \displaystyleut+uxxx-6uux=0 | Shallow waves, Integrable systems | ||||||||||||
KdV (cylindrical) | 1+1 | \displaystyle\partialtu+
u-6u\partialxu+u/2t=0 | --> | ||||||||||||
KdV (deformed) | 1+1 | \displaystyle\partialtu+\left(uxx-2η
\left(η+u2\right)\right)x=0 | |||||||||||||
K(n,n) equation) | ut
=0 | ||||||||||||||
KdV (generalized) | 1+1 | \displaystyle\partialtu+
u+\partialxf(u)=0 | |||||||||||||
KdV (modified) | 1+1 | \displaystyle\partialtu+
u\pm
u=0 | --> | ||||||||||||
KdV (modified modified) | 1+1 | \displaystyleut+uxxx-\tfrac{1}{8}
+ux\left(Aeau+B+Ce-au\right)=0 | --> | ||||||||||||
KdV (spherical) | 1+1 | \displaystyle\partialtu+
u-6\partialxu+u/t=0 | --> | ||||||||||||
KdV (super) | 1+1 | \displaystyleut=6uux-uxxx+3wwxx, wt=3uxw+6uwx-4wxxx | |||||||||||||
KdV (transitional) | 1+1 | \displaystyle\partialtu+
u-6f(t)u\partialxu=0 | --> | ||||||||||||
KdV (variable coefficients) | 1+1 | \displaystyle\partialtu+\beta
u+\alpha
u=0 | --> | ||||||||||||
KdV (Burgers) | 1+1 | \displaystyle\partialtu+
u+2u\partialxu-\nuuxx=0 | --> | ||||||||||||
There are more minor variations listed in the article on KdV equations. | |||||||||||||||
Kuramoto–Sivashinsky equation | \displaystyle
2u+\tfrac{1}{2} | \nabla u | ^2=0 | Combustion |
Name | Dim | Equation | Applications | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landau–Lifshitz model | 1+n | \displaystyle
=S\wedge
+S\wedgeJS | Magnetic field in solids | ||||||||||||||||||||||||||||||
Lin–Tsien equation | 1+2 | \displaystyle2utx+uxuxx-uyy=0 | |||||||||||||||||||||||||||||||
Liouville equation | any | \displaystyle\nabla2u+eλ=0 | |||||||||||||||||||||||||||||||
Liouville–Bratu–Gelfand equation | any | \nabla2\psi+λe\psi=0 | combustion, astrophysics | ||||||||||||||||||||||||||||||
Logarithmic Schrödinger equation | any | i
+\Delta\psi+\psiln | \psi | ^2 = 0. | Superfluids, Quantum gravity | ||||||||||||||||||||||||||||
Minimal surface | 3 | \displaystyle\operatorname{div}(Du/\sqrt{1+|Du|2})=0 | minimal surfaces | ||||||||||||||||||||||||||||||
any | \displaystyle\det(\partialij\varphi)= | ||||||||||||||||||||||||||||||||
Navier–Stokes (and its derivation) | 1+3 | \displaystyle\rho\left(
+vj
\right)=-
+
\left[\mu\left(
+
\right)+λ
\right]+\rhofi + mass conservation:
+
=0 + an equation of state to relate p and ρ, e.g. for an incompressible flow:
=0 | Fluid flow, gas flow | ||||||||||||||||||||||||||||||
Nonlinear Schrödinger (cubic) | 1+1 | \displaystylei\partialt\psi=-{1\over
| \psi | ^2 \psi | optics, water waves | ||||||||||||||||||||||||||||
Nonlinear Schrödinger (derivative) | 1+1 | \displaystylei\partialt\psi=-{1\over
x(i\kappa | \psi | ^2 \psi) | optics, water waves | ||||||||||||||||||||||||||||
Omega equation | 1+3 | \displaystyle\nabla2\omega+
\displaystyle=
Vg ⋅ \nablap(\zetag+f)+
g ⋅ \nablapT) | atmospheric physics | ||||||||||||||||||||||||||||||
Plateau | 2 | \displaystyle
-2uxuyuxy
=0 | minimal surfaces | ||||||||||||||||||||||||||||||
Pohlmeyer–Lund–Regge | 2 | \displaystyleuxx-uyy\pm\sinu\cosu+
\displaystyle
=
u)y | |||||||||||||||||||||||||||||||
Porous medium | 1+n | \displaystyle
| diffusion | ||||||||||||||||||||||||||||||
Prandtl | 1+2 | \displaystyleut+uux+vuy=Ut+UU
uyy \displaystyleux+vy=0 | boundary layer |
Name | Dim | Equation | Applications | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rayleigh | 1+1 | \displaystyleutt-uxx=\varepsilon(ut-u
| ||||||||||||||||||||||||
Any | \displaystyle\partialtgij=-2Rij | Poincaré conjecture | ||||||||||||||||||||||||
Richards equation | 1+3 | \displaystyle\thetat=\left[K(\theta)\left(\psiz+1\right)\right]z | Variably saturated flow in porous media | |||||||||||||||||||||||
Rosenau–Hyman | 1+1 | ut+a
+
=0 | compacton solutions | |||||||||||||||||||||||
Sawada–Kotera | 1+1 | \displaystyle
xuxx+15uuxxx+uxxxxx=0 | ||||||||||||||||||||||||
Sack–Schamel equation | 1+1 | \ddotV+\partialη\left[
\partialη\left(
\right)\right]=0 | plasmas | |||||||||||||||||||||||
Schamel equation | 1+1 | \phit+(1+b\sqrt\phi)\phix+\phixxx=0 | plasmas, solitons, optics | |||||||||||||||||||||||
Schlesinger | Any | \displaystyle{\partialAi\over\partialtj}{\left[Ai, Aj\right]\overti-tj}, i ≠ j, {\partialAi\over\partialti}=-
{\left[Ai, Aj\right]\overti-tj}, 1\leqi,j\leqn | isomonodromic deformations | |||||||||||||||||||||||
1+3 | \displaystyleDA\varphi=0,
| Seiberg–Witten invariants, QFT | ||||||||||||||||||||||||
Shallow water | 1+2 | \displaystyleηt+(ηu)x+(ηv)y=0, (ηu)t+\left(ηu2+
gη2\right)x+(ηuv)y=0, (ηv)t+(ηuv)x+\left(ηv2+
gη
=0 | shallow water waves | |||||||||||||||||||||||
Sine–Gordon | 1+1 | \displaystyle\varphitt-\varphixx+\sin\varphi=0 | Solitons, QFT | |||||||||||||||||||||||
Sinh–Gordon | 1+1 | \displaystyleuxt=\sinhu | Solitons, QFT | |||||||||||||||||||||||
Sinh–Poisson | 1+n | \displaystyle\nabla2u+\sinhu=0 | Fluid Mechanics | |||||||||||||||||||||||
Swift–Hohenberg | any | \displaystyleut=ru-(1+\nabla2)2u+N(u) | pattern forming | |||||||||||||||||||||||
Thomas | 2 | \displaystyleuxy+\alphaux+\betauy+\gammauxuy=0 | ||||||||||||||||||||||||
Thirring | 1+1 | \displaystyleiux+v+u | v | ^2=0, \displaystyleivt+u+v | u | ^2=0 | Dirac field, QFT | |||||||||||||||||||
Toda lattice | any | \displaystyle\nabla2logun=un+1-2un+un-1 | ||||||||||||||||||||||||
1+2 | \displaystyle(\partialt+\partial
\bar(uw)=0 \displaystyle\partial\baru=3\partialzv \displaystyle\partialzw=3\partial\barv | shallow water waves | ||||||||||||||||||||||||
Vorticity equation |
+(u ⋅ \nabla)\boldsymbol\omega=(\boldsymbol\omega ⋅ \nabla)u-\boldsymbol\omega(\nabla ⋅ u)+
\nabla\rho x \nablap+\nabla x \left(
\right)+\nabla x \left(
\right), \boldsymbol{\omega}=\nabla x u | Fluid Mechanics | ||||||||||||||||||||||||
Wadati–Konno–Ichikawa–Schimizu | 1+1 | \displaystyleiut+((1+ | u | ^2)^u)_=0 | ||||||||||||||||||||||
WDVV equations | Any | \displaystyle
3F\over\partialt\alphat\betat\sigma}η\sigma{\partial3F\over\partialt\mut\nut\tau}\right) \displaystyle=
3F\over\partialt\alphat\nut\sigma}η\sigma{\partial3F\over\partialt\mut\betat\tau}\right) | Topological field theory, QFT | |||||||||||||||||||||||
WZW model | 1+1 | Sk(\gamma)=-
d2xl{K}(\gamma-1\partial\mu\gamma,\gamma-1\partial\mu\gamma)+2\pikSWZ(\gamma) SWZ(\gamma)=-
d3y\varepsilonijkl{K}\left(\gamma-1
,\left[ \gamma-1
, \gamma-1
\right] \right) | QFT | |||||||||||||||||||||||
Whitham equation | 1+1 | \displaystyleηt+\alphaηηx+
K(x-\xi)η\xi(\xi,t)d\xi=0 | water waves | |||||||||||||||||||||||
Williams spray equation |
+\nablax ⋅ (vfj)+\nablav ⋅ (Fjfj)=-
(Rjfj)-
(Ejfj)+Qj+\Gammaj, Fj=
, Rj=
, Ej=
, j=1,2,...,M | Combustion | ||||||||||||||||||||||||
Yamabe | n | \displaystyle\Delta\varphi+h(x)\varphi=λf(x)\varphi(n+2)/(n-2) | Differential geometry | |||||||||||||||||||||||
Any | \displaystyleD\muF\mu\nu=0, F\mu=A\mu,-A\nu,+[A\mu,A\nu] | Gauge theory, QFT | ||||||||||||||||||||||||
Yang–Mills (self-dual/anti-self-dual) | 4 | F\alpha=\pm\varepsilon\alphaF\mu, F\mu=A\mu,-A\nu,+[A\mu,A\nu] | ||||||||||||||||||||||||
Yukawa | 1+n | \displaystylei
u+\Deltau=-Au, \displaystyle\BoxA=
A+ | u | ^2 | Meson-nucleon interactions, QFT | |||||||||||||||||||||
Zakharov system | 1+3 | \displaystylei
u+\Deltau=un, \displaystyle\Boxn=-\Delta( | u | ^2_) | Langmuir waves | |||||||||||||||||||||
Zakharov–Schulman | 1+3 | \displaystyleiut+L1u=\varphiu, \displaystyleL2\varphi=L3( | u | ^2) | Acoustic waves | |||||||||||||||||||||
Zeldovich–Frank-Kamenetskii equation | 1+3 | \displaystyleut=D\nabla2u+
u(1-u)e-\beta(1-u) | Combustion | |||||||||||||||||||||||
Zoomeron | 1+1 | \displaystyle(uxt/u)tt-(uxt/u)xx
=0 | Solitons | |||||||||||||||||||||||
φ4 equation | 1+1 | \displaystyle\varphitt-\varphixx-\varphi+\varphi3=0 | QFT | |||||||||||||||||||||||
σ-model | 1+1 | \displaystyle{v}xt+({v}x{v}t){v}=0 | Harmonic maps, integrable systems, QFT |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "List of nonlinear partial differential equations".
Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2025, A B Cryer, All Rights Reserved. Cookie policy.