Isotopes of lead explained

Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series (or radium series), the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (See lead–lead dating and uranium–lead dating.)

The longest-lived radioisotopes are 205Pb with a half-life of 17.3 million years and 202Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope, 210Pb with a half-life of 22.2 years, is useful for studying the sedimentation chronology of environmental samples on time scales shorter than 100 years.[1]

The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208Pb. (The more massive 209Bi, long considered to be stable, actually has a half-life of 2.01×1019 years.) 208Pb is also a doubly magic isotope, as it has 82 protons and 126 neutrons.[2] It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species.

The four primordial isotopes of lead are all observationally stable, meaning that they are predicted to undergo radioactive decay but no decay has been observed yet. These four isotopes are predicted to undergo alpha decay and become isotopes of mercury which are themselves radioactive or observationally stable.

In its fully ionized state, the beta decay of isotope 210Pb does not release a free electron; the generated electron is instead captured by the atom's empty orbitals.[3]

List of isotopes

|-id=Lead-178| rowspan=2|178Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 96| rowspan=2|178.003836(25)| rowspan=2|250(80) μs| α| 174Hg| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+?| 178Tl|-id=Lead-179| 179Pb|| style="text-align:right" | 82| style="text-align:right" | 97| 179.002(87)| 2.7(2) ms| α| 175Hg| (9/2−)|||-id=Lead-180| 180Pb|| style="text-align:right" | 82| style="text-align:right" | 98| 179.997916(13)| 4.1(3) ms| α| 176Hg| 0+|||-id=Lead-181| rowspan=2|181Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 99| rowspan=2|180.996661(91)| rowspan=2|39.0(8) ms| α| 177Hg| rowspan=2|(9/2−)| rowspan=2|| rowspan=2||-| β+?| 181Tl|-id=Lead-182| rowspan=2|182Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 100| rowspan=2|181.992674(13)| rowspan=2|55(5) ms| α| 178Hg| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+?| 182Tl|-id=Lead-183| rowspan=2|183Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 101| rowspan=2|182.991863(31)| rowspan=2|535(30) ms| α| 179Hg| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| β+?| 183Tl|-id=Lead-183m| rowspan=3 style="text-indent:1em" | 183mPb| rowspan=3|| rowspan=3 colspan="3" style="text-indent:2em" | 94(8) keV| rowspan=3|415(20) ms| α| 179Hg| rowspan=3|13/2+| rowspan=3|| rowspan=3||-| β+?| 183Tl|-| IT?| 183Pb|-id=Lead-184| rowspan=2|184Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 102| rowspan=2|183.988136(14)| rowspan=2|490(25) ms| α (80%)| 180Hg| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+? (20%)| 184Tl|-id=Lead-185| rowspan=2|185Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 103| rowspan=2|184.987610(17)| rowspan=2|6.3(4) s| β+ (66%)| 185Tl| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| α (34%)| 181Hg|-id=Lead-185m| rowspan=2 style="text-indent:1em" | 185mPb[4] | rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 70(50) keV| rowspan=2|4.07(15) s| α (50%)| 181Hg| rowspan=2|13/2+| rowspan=2|| rowspan=2||-| β+? (50%)| 185Tl|-id=Lead-186| rowspan=2|186Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 104| rowspan=2|185.984239(12)| rowspan=2|4.82(3) s| β+? (60%)| 186Tl| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (40%)| 182Hg|-id=Lead-187| rowspan=2|187Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 105| rowspan=2|186.9839108(55)| rowspan=2|15.2(3) s| β+ (90.5%)| 187Tl| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| α (9.5%)| 183Hg|-id=Lead-187m| rowspan=2 style="text-indent:1em" | 187mPb[4] | rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 19(10) keV| rowspan=2|18.3(3) s| β+ (88%)| 187Tl| rowspan=2|13/2+| rowspan=2|| rowspan=2||-| α (12%)| 183Hg|-id=Lead-188| rowspan=2|188Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 106| rowspan=2|187.980879(11)| rowspan=2|25.1(1) s| β+ (91.5%)| 188Tl| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (8.5%)| 184Hg|-id=Lead-188m1| style="text-indent:1em" | 188m1Pb|| colspan="3" style="text-indent:2em" | 2577.2(4) keV| 800(20) ns| IT| 188Pb| 8−|||-id=Lead-188m2| style="text-indent:1em" | 188m2Pb|| colspan="3" style="text-indent:2em" | 2709.8(5) keV| 94(12) ns| IT| 188Pb| 12+|||-id=Lead-188m3| style="text-indent:1em" | 188m3Pb|| colspan="3" style="text-indent:2em" | 4783.4(7) keV| 440(60) ns| IT| 188Pb| (19−)|||-id=Lead-189| rowspan=2|189Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 107| rowspan=2|188.980844(15)| rowspan=2|39(8) s| β+ (99.58%)| 189Tl| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| α (0.42%)| 185Hg|-id=Lead-189m1| rowspan=3 style="text-indent:1em" | 189m1Pb| rowspan=3|| rowspan=3 colspan="3" style="text-indent:2em" | 40(4) keV| rowspan=3|50.5(21) s| β+ (99.6%)| 189Tl| rowspan=3|13/2+| rowspan=3|| rowspan=3||-| α (0.4%)| 185Hg|-| IT?| 189Pb|-id=Lead-189m2| style="text-indent:1em" | 189m2Pb|| colspan="3" style="text-indent:2em" | 2475(4) keV| 26(5) μs| IT| 189Pb| 31/2−|||-id=Lead-190| rowspan=2|190Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 108| rowspan=2|189.978082(13)| rowspan=2|71(1) s| β+ (99.60%)| 190Tl| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (0.40%)| 186Hg|-id=Lead-190m1| style="text-indent:1em" | 190m1Pb|| colspan="3" style="text-indent:2em" | 2614.8(8) keV| 150(14) ns| IT| 190Pb| 10+|||-id=Lead-190m2| style="text-indent:1em" | 190m2Pb|| colspan="3" style="text-indent:2em" | 2665(50)# keV| 24.3(21) μs| IT| 190Pb| (12+)|||-id=Lead-190m3| style="text-indent:1em" | 190m3Pb|| colspan="3" style="text-indent:2em" | 2658.2(8) keV| 7.7(3) μs| IT| 190Pb| 11−|||-id=Lead-191| rowspan=2|191Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 109| rowspan=2|190.9782165(71)| rowspan=2|1.33(8) min| β+ (99.49%)| 191Tl| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| α (0.51%)| 187Hg|-id=Lead-191m1| rowspan=2 style="text-indent:1em" | 191m1Pb| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 58(10) keV| rowspan=2|2.18(8) min| β+ (99.98%)| 191Tl| rowspan=2|13/2+| rowspan=2|| rowspan=2||-| α (0.02%)| 187Hg|-id=Lead-191m2| style="text-indent:1em" | 191m2Pb|| colspan="3" style="text-indent:2em" | 2659(10) keV| 180(80) ns| IT| 191Pb| 33/2+|||-id=Lead-192| rowspan=2|192Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 110| rowspan=2|191.9757896(61)| rowspan=2|3.5(1) min| β+ (99.99%)| 192Tl| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (0.0059%)| 188Hg|-id=Lead-192m1| style="text-indent:1em" | 192m1Pb|| colspan="3" style="text-indent:2em" | 2581.1(1) keV| 166(6) ns| IT| 192Pb| 10+|||-id=Lead-192m2| style="text-indent:1em" | 192m2Pb|| colspan="3" style="text-indent:2em" | 2625.1(11) keV| 1.09(4) μs| IT| 192Pb| 12+|||-id=Lead-192m3| style="text-indent:1em" | 192m3Pb|| colspan="3" style="text-indent:2em" | 2743.5(4) keV| 756(14) ns| IT| 192Pb| 11−|||-id=Lead-193| 193Pb|| style="text-align:right" | 82| style="text-align:right" | 111| 192.976136(11)| 4# min| β+?| 193Tl| 3/2−#|||-id=Lead-193m1| style="text-indent:1em" | 193m1Pb|| colspan="3" style="text-indent:2em" | 93(12) keV| 5.8(2) min| β+| 193Tl| 13/2+|||-id=Lead-193m2| style="text-indent:1em" | 193m2Pb|| colspan="3" style="text-indent:2em" | 2707(13) keV| 180(15) ns| IT| 193Pb| 33/2+|||-id=Lead-194| rowspan=2|194Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 112| rowspan=2|193.974012(19)| rowspan=2|10.7(6) min| β+| 194Tl| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (7.3×10−6%)| 190Hg|-id=Lead-194m1| style="text-indent:1em" | 194m1Pb|| colspan="3" style="text-indent:2em" | 2628.1(4) keV| 370(13) ns| IT| 194Pb| 12+|||-id=Lead-194m2| style="text-indent:1em" | 194m2Pb|| colspan="3" style="text-indent:2em" | 2933.0(4) keV| 133(7) ns| IT| 194Pb| 11−|||-id=Lead-195| 195Pb|| style="text-align:right" | 82| style="text-align:right" | 113| 194.9745162(55)| 15.0(14) min| β+| 195Tl| 3/2-|||-id=Lead-195m1| rowspan=2 style="text-indent:1em" | 195m1Pb| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 202.9(7) keV| rowspan=2|15.0(12) min| β+| 195Tl| rowspan=2|13/2+| rowspan=2|| rowspan=2||-| IT?| 195Pb|-id=Lead-195m2| style="text-indent:1em" | 195m2Pb|| colspan="3" style="text-indent:2em" | 1759.0(7) keV| 10.0(7) μs| IT| 195Pb| 21/2−|||-id=Lead-195m3| style="text-indent:1em" | 195m3Pb|| colspan="3" style="text-indent:2em" | 2901.7(8) keV| 95(20) ns| IT| 195Pb| 33/2+|||-id=Lead-196| rowspan=2|196Pb| rowspan=2|| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 114| rowspan=2|195.9727876(83)| rowspan=2|37(3) min| β+| 196Tl| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (<3×10−5%)| 192Hg|-id=Lead-196m1| style="text-indent:1em" | 196m1Pb|| colspan="3" style="text-indent:2em" | 1797.51(14) keV| 140(14) ns| IT| 196Pb| 5−|||-id=Lead-196m2| style="text-indent:1em" | 196m2Pb|| colspan="3" style="text-indent:2em" | 2694.6(3) keV| 270(4) ns| IT| 196Pb| 12+|||-id=Lead-197| 197Pb|| style="text-align:right" | 82| style="text-align:right" | 115| 196.9734347(52)| 8.1(17) min| β+| 197Tl| 3/2−|||-id=Lead-197m1| rowspan=2 style="text-indent:1em" | 197m1Pb| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 319.31(11) keV| rowspan=2|42.9(9) min| β+ (81%)| 197Tl| rowspan=2|13/2+| rowspan=2|| rowspan=2||-| IT (19%)| 197Pb|-id=Lead-197m2| style="text-indent:1em" | 197m2Pb|| colspan="3" style="text-indent:2em" | 1914.10(25) keV| 1.15(20) μs| IT| 197Pb| 21/2−|||-id=Lead-198| 198Pb|| style="text-align:right" | 82| style="text-align:right" | 116| 197.9720155(94)| 2.4(1) h| β+| 198Tl| 0+|||-id=Lead-198m1| style="text-indent:1em" | 198m1Pb|| colspan="3" style="text-indent:2em" | 2141.4(4) keV| 4.12(7) μs| IT| 198Pb| 7−|||-id=Lead-198m2| style="text-indent:1em" | 198m2Pb|| colspan="3" style="text-indent:2em" | 2231.4(5) keV| 137(10) ns| IT| 198Pb| 9−|||-id=Lead-198m3| style="text-indent:1em" | 198m3Pb|| colspan="3" style="text-indent:2em" | 2821.7(6) keV| 212(4) ns| IT| 198Pb| 12+|||-id=Lead-199| 199Pb|| style="text-align:right" | 82| style="text-align:right" | 117| 198.9729126(73)| 90(10) min| β+| 199Tl| 3/2−|||-id=Lead-199m1| rowspan=2 style="text-indent:1em" | 199m1Pb| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 429.5(27) keV| rowspan=2|12.2(3) min| IT| 199Pb| rowspan=2|(13/2+)| rowspan=2|| rowspan=2||-| β+?| 199Tl|-id=Lead-199m2| style="text-indent:1em" | 199m2Pb|| colspan="3" style="text-indent:2em" | 2563.8(27) keV| 10.1(2) μs| IT| 199Pb| (29/2−)|||-id=Lead-200| 200Pb|| style="text-align:right" | 82| style="text-align:right" | 118| 199.971819(11)| 21.5(4) h| EC| 200Tl| 0+|||-id=Lead-200m1| style="text-indent:1em" | 200m1Pb|| colspan="3" style="text-indent:2em" | 2183.3(11) keV| 456(6) ns| IT| 200Pb| (9−)|||-id=Lead-200m2| style="text-indent:1em" | 200m2Pb|| colspan="3" style="text-indent:2em" | 3005.8(12) keV| 198(3) ns| IT| 200Pb| 12+)|||-id=Lead-201| 201Pb| | style="text-align:right" | 82| style="text-align:right" | 119| 200.972870(15)| 9.33(3) h| β+| 201Tl| 5/2−| | |-id=Lead-201m1| rowspan=2 style="text-indent:1em" | 201m1Pb| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 629.1(3) keV| rowspan=2|60.8(18) s| IT| 201Pb| rowspan=2|13/2+| rowspan=2|| rowspan=2||-| β+?| 201Tl|-id=Lead-201m2| style="text-indent:1em" | 201m2Pb|| colspan="3" style="text-indent:2em" | 2953(20) keV| 508(3) ns| IT| 201Pb| (29/2−)|||-id=Lead-202| 202Pb| | style="text-align:right" | 82| style="text-align:right" | 120| 201.9721516(41)| 5.25(28)×104 y| EC| 202Tl| 0+| | |-id=Lead-202m1| rowspan=2 style="text-indent:1em" | 202m1Pb| rowspan=2|| rowspan=2 colspan="3" style="text-indent:2em" | 2169.85(8) keV| rowspan=2|3.54(2) h| IT (90.5%)| 202Pb| rowspan=2|9−| rowspan=2|| rowspan=2||-| β+ (9.5%)| 202Tl|-id=Lead-202m2| style="text-indent:1em" | 202m2Pb|| colspan="3" style="text-indent:2em" | 4140(50)# keV| 100(3) ns| IT| 202Pb| 16+|||-id=Lead-202m3| style="text-indent:1em" | 202m3Pb|| colspan="3" style="text-indent:2em" | 5300(50)# keV| 108(3) ns| IT| 202Pb| 19−|||-id=Lead-203| 203Pb|| style="text-align:right" | 82| style="text-align:right" | 121| 202.9733906(70)| 51.924(15) h| EC| 203Tl| 5/2−|||-id=Lead-203m1| style="text-indent:1em" | 203m1Pb|| colspan="3" style="text-indent:2em" | 825.2(3) keV| 6.21(8) s| IT| 203Pb| 13/2+|||-id=Lead-203m2| style="text-indent:1em" | 203m2Pb|| colspan="3" style="text-indent:2em" | 2949.2(4) keV| 480(7) ms| IT| 203Pb| 29/2−|||-id=Lead-203m3| style="text-indent:1em" | 203m3Pb|| colspan="3" style="text-indent:2em" | 2970(50)# keV| 122(4) ns| IT| 203Pb| 25/2−#|||-id=Lead-204| 204Pb[5] || style="text-align:right" | 82| style="text-align:right" | 122| 203.9730435(12)| colspan="3" style="text-align:center;"|Observationally stable| 0+| 0.014(6)| 0.0000–0.0158[6] |-id=Lead-204m1| style="text-indent:1em" | 204m1Pb|| colspan="3" style="text-indent:2em" | 1274.13(5) keV| 265(6) ns| IT| 204Pb| 4+|||-id=Lead-204m2| style="text-indent:1em" | 204m2Pb|| colspan="3" style="text-indent:2em" | 2185.88(8) keV| 66.93(10) min| IT| 204Pb| 9−|||-id=Lead-204m3| style="text-indent:1em" | 204m3Pb|| colspan="3" style="text-indent:2em" | 2264.42(6) keV| 490(70) ns| IT| 204Pb| 7−|||-id=Lead-205| 205Pb|| style="text-align:right" | 82| style="text-align:right" | 123| 204.9744817(12)| 17.0(9)×107 y| EC| 205Tl| 5/2−|||-id=Lead-205m1| style="text-indent:1em" | 205m1Pb|| colspan="3" style="text-indent:2em" | 2.329(7) keV| 24.2(4) μs| IT| 205Pb| 1/2−|||-id=Lead-205m2| style="text-indent:1em" | 205m2Pb|| colspan="3" style="text-indent:2em" | 1013.85(3) keV| 5.55(2) ms| IT| 205Pb| 13/2+|||-id=Lead-205m3| style="text-indent:1em" | 205m3Pb|| colspan="3" style="text-indent:2em" | 3195.8(6) keV| 217(5) ns| IT| 205Pb| 25/2−|||-| 206Pb[7] | Radium G[8] | style="text-align:right" | 82| style="text-align:right" | 124| 205.9744652(12)| colspan="3" style="text-align:center;"|Observationally stable| 0+| 0.241(30)| 0.0190–0.8673[6] |-id=Lead-206m1| style="text-indent:1em" | 206m1Pb|| colspan="3" style="text-indent:2em" | 2200.16(4) keV| 125(2) μs| IT| 206Pb| 7−|||-id=Lead-206m2| style="text-indent:1em" | 206m2Pb|| colspan="3" style="text-indent:2em" | 4027.3(7) keV| 202(3) ns| IT| 206Pb| 12+|||-| 207Pb[9] | Actinium D| style="text-align:right" | 82| style="text-align:right" | 125| 206.9758968(12)| colspan="3" style="text-align:center;"|Observationally stable| 1/2−| 0.221(50)| 0.0035–0.2351[6] |-id=Lead-207m| style="text-indent:1em" | 207mPb|| colspan="3" style="text-indent:2em" | 1633.356(4) keV| 806(5) ms| IT| 207Pb| 13/2+|||-id=Lead-208| 208Pb[10] | Thorium D| style="text-align:right" | 82| style="text-align:right" | 126| 207.9766520(12)| colspan="3" style="text-align:center;"|Observationally stable| 0+| 0.524(70)| 0.0338–0.9775[6] |-id=Lead-208m| style="text-indent:1em" | 208mPb|| colspan="3" style="text-indent:2em" | 4895.23(5) keV| 535(35) ns| IT| 208Pb| 10+|||-id=Lead-209| 209Pb|| style="text-align:right" | 82| style="text-align:right" | 127| 208.9810900(19)| 3.235(5) h| β| 209Bi| 9/2+| Trace[11] ||-id=Lead-210| rowspan=2|210Pb| rowspan=2|Radium D
Radiolead
Radio-lead| rowspan=2 style="text-align:right" | 82| rowspan=2 style="text-align:right" | 128| rowspan=2|209.9841884(16)| rowspan=2|22.20(22) y| β (100%)| 210Bi| rowspan=2|0+| rowspan=2|Trace[12] | rowspan=2||-| α (1.9×10−6%)| 206Hg|-id=Lead-210m1| style="text-indent:1em" | 210m1Pb|| colspan="3" style="text-indent:2em" | 1194.61(18) keV| 92(10) ns| IT| 210Pb| 6+|||-id=Lead-210m2| style="text-indent:1em" | 210m2Pb|| colspan="3" style="text-indent:2em" | 1274.8(3) keV| 201(17) ns| IT| 210Pb| 8+|||-id=Lead-211| 211Pb| Actinium B| style="text-align:right" | 82| style="text-align:right" | 129| 210.9887353(24)| 36.1628(25) min| β| 211Bi| 9/2+| Trace[13] ||-id=Lead-211m| style="text-indent:1em" | 211mPb|| colspan="3" style="text-indent:2em" | 1719(23) keV| 159(28) ns| IT| 211Pb| (27/2+)|||-| 212Pb| Thorium B| style="text-align:right" | 82| style="text-align:right" | 130| 211.9918959(20)| 10.627(6) h| β| 212Bi| 0+| Trace[14] ||-id=Lead-212m| style="text-indent:1em" | 212mPb|| colspan="3" style="text-indent:2em" | 1335(2) keV| 6.0(8) μs| IT| 212Pb| 8+#|||-id=Lead-213| 213Pb|| style="text-align:right" | 82| style="text-align:right" | 131| 212.9965608(75)| 10.2(3) min| β| 213Bi| (9/2+)| Trace[11] ||-id=Lead-213m| style="text-indent:1em" | 213mPb|| colspan="3" style="text-indent:2em" | 1331.0(17) keV| 260(20) ns| IT| 213Pb| (21/2+)|||-id=Lead-214| 214Pb| Radium B| style="text-align:right" | 82| style="text-align:right" | 132| 213.9998035(21)| 27.06(7) min| β| 214Bi| 0+| Trace||-id=Lead-214m| style="text-indent:1em" | 214mPb|| colspan="3" style="text-indent:2em" | 1420(20) keV| 6.2(3) μs| IT| 214Pb| 8+#|||-id=Lead-215| 215Pb|| style="text-align:right" | 82| style="text-align:right" | 133| 215.004662(57)| 142(11) s| β| 215Bi| 9/2+#|||-id=Lead-216| 216Pb|| style="text-align:right" | 82| style="text-align:right" | 134| 216.00806(22)#| 1.66(20) min| β| 216Bi| 0+|||-id=Lead-216m| style="text-indent:1em" | 216mPb|| colspan="3" style="text-indent:2em" | 1514(20) keV| 400(40) ns| IT| 216Pb| 8+#|||-id=Lead-217| 217Pb|| style="text-align:right" | 82| style="text-align:right" | 135| 217.01316(32)#| 19.9(53) s| β| 217Bi| 9/2+#|||-id=Lead-218| 218Pb|| style="text-align:right" | 82| style="text-align:right" | 136| 218.01678(32)#| 14.8(68) s| β| 218Bi| 0+|||-id=Lead-219| 219Pb|| style="text-align:right" | 82| style="text-align:right" | 137| 219.02214(43)#| 3# s
[>300&nbsp;ns]| β?| 219Bi| 11/2+#|||-id=Lead-220| 220Pb|| style="text-align:right" | 82| style="text-align:right" | 138| 220.02591(43)#| 1# s
[>300&nbsp;ns]| β?| 220Bi| 0+||

Lead-206

See also: Decay chain. 206Pb is the final step in the decay chain of 238U, the "radium series" or "uranium series". In a closed system, over time, a given mass of 238U will decay in a sequence of steps culminating in 206Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of 234U is 245,500 years). Once this stabilized system is reached, the ratio of 238U to 206Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant.

Like most radioisotopes found in the radium series, 206Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both 210Po (historically called radium F) by alpha decay, and the much rarer 206Tl (radium EII) by beta decay.

Lead-206 has been proposed for use in fast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improve neutron economy and greatly suppress unwanted production of highly radioactive byproducts.[15]

Lead-204, -207, and -208

204Pb is entirely primordial, and is thus useful for estimating the fraction of the other lead isotopes in a given sample that are also primordial, since the relative fractions of the various primordial lead isotopes is constant everywhere.[16] Any excess lead-206, -207, and -208 is thus assumed to be radiogenic in origin, allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes.207Pb is the end of the actinium series from 235U.

208Pb is the end of the thorium series from 232Th. While it only makes up approximately half of the composition of lead in most places on Earth, it can be found naturally enriched up to around 90% in thorium ores.[17] 208Pb is the heaviest known stable nuclide and also the heaviest known doubly magic nucleus, as Z = 82 and N = 126 correspond to closed nuclear shells.[18] As a consequence of this particularly stable configuration, its neutron capture cross section is very low (even lower than that of deuterium in the thermal spectrum), making it of interest for lead-cooled fast reactors.

Lead-212

212Pb-containing radiopharmaceuticals have been trialed as therapeutic agents for the experimental cancer treatment targeted alpha-particle therapy.[19]

Sources

Isotope masses from:

Half-life, spin, and isomer data selected from the following sources.

Notes and References

  1. Determining the Ages of Recent Sediments Using Measurements of Trace Radioactivity . Hewitt W. . Jeter . Terra et Aqua . 78 . 21–28 . March 2000 . October 23, 2019 . March 4, 2016 . https://web.archive.org/web/20160304043824/https://www.iadc-dredging.com/ul/cms/terraetaqua/document/0/9/0/90/90/1/terra-et-aqua-nr78-03.pdf . dead .
  2. Magic and doubly-magic nuclei . Blank . B. . Regan . P.H. . Nuclear Physics News . 2000 . 10 . 4 . 20–27 . 10.1080/10506890109411553. 121966707 .
  3. Bound-state beta decay of highly ionized atoms. Takahashi. K. Boyd. R. N.. Mathews. G. J.. Yokoi. K.. October 1987. 2016-11-20. 0556-2813. 1639677. 36. 4. 1522–1528. Physical Review C. 10.1103/PhysRevC.36.1522. 9954244. 1987PhRvC..36.1522T. As can be seen in Table I (187Re, 210Pb, 227Ac, and 241Pu), some continuum-state decays are energetically forbidden when the atom is fully ionized. This is because the atomic binding energies liberated by ionization, i.e., the total electron binding in the neutral atom,, increases with . If [the [[decay energy]]], the continuum-state decay is energetically forbidden..
  4. Order of ground state and isomer is uncertain.
  5. Used in lead–lead dating
  6. Web site: Standard Atomic Weights: Lead. 2020. CIAAW.
  7. Final decay product of 4n+2 decay chain (the Radium or Uranium series)
  8. Kuhn . W. . LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . 1929 . 8 . 52 . 628 . 10.1080/14786441108564923.
  9. Final decay product of 4n+3 decay chain (the Actinium series)
  10. Heaviest observationally stable nuclide; final decay product of 4n decay chain (the Thorium series)
  11. Intermediate decay product of 237Np
  12. Intermediate decay product of 238U
  13. Intermediate decay product of 235U
  14. Intermediate decay product of 232Th
  15. Polonium Issue in Fast Reactor Lead Coolants and One of the Ways of Its Solution . Khorasanov . G. L. . Ivanov . A. P. . Blokhin . A. I. . 10th International Conference on Nuclear Engineering . 2002 . ICONE10-22330 . 711–717 . 10.1115/ICONE10-22330.
  16. Woods. G.D.. November 2014. Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode. Agilent Technologies. Stockport, UK.
  17. A. Yu. Smirnov . V. D. Borisevich . A. Sulaberidze . Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials . Theoretical Foundations of Chemical Engineering . July 2012 . 46 . 4 . 373–378 . 10.1134/S0040579512040161 . 98821122 .
  18. Magic and doubly-magic nuclei . Blank . B. . Regan . P.H. . Nuclear Physics News . 2000 . 10 . 4 . 20–27 . 10.1080/10506890109411553. 121966707 .
  19. Kokov . K.V. . Egorova . B.V. . German . M.N. . Klabukov . I.D. . Krasheninnikov . M.E. . Larkin-Kondrov . A.A. . Makoveeva . K.A. . Ovchinnikov . M.V. . Sidorova . M.V. . Chuvilin . D.Y. . 2022 . 212Pb: Production Approaches and Targeted Therapy Applications . Pharmaceutics . 14 . 1 . 189 . 10.3390/pharmaceutics14010189 . 1999-4923 . 8777968 . 35057083. free .