Isotopes of potassium explained

Potassium has 25 known isotopes from to as well as, as well as an unconfirmed report of .[1] Three of those isotopes occur naturally: the two stable forms (93.3%) and (6.7%), and a very long-lived radioisotope (0.012%)

Naturally occurring radioactive decays with a half-life of 1.248×109 years. 89% of those decays are to stable by beta decay, whilst 11% are to by either electron capture or positron emission. This latter decay branch has produced an isotopic abundance of argon on Earth which differs greatly from that seen in gas giants and stellar spectra. has the longest known half-life for any positron-emitter nuclide. The long half-life of this primordial radioisotope is caused by a highly spin-forbidden transition: has a nuclear spin of 4, while both of its decay daughters are even–even isotopes with spins of 0.

occurs in natural potassium in sufficient quantity that large bags of potassium chloride commercial salt substitutes can be used as a radioactive source for classroom demonstrations. is the largest source of natural radioactivity in healthy animals and humans, greater even than . In a human body of 70 kg mass, about 4,400 nuclei of decay per second.[2]

The decay of to is used in potassium-argon dating of rocks. Minerals are dated by measurement of the concentration of potassium and the amount of radiogenic that has accumulated. Typically, the method assumes that the rocks contained no argon at the time of formation and all subsequent radiogenic argon (i.e.,) was retained. has also been extensively used as a radioactive tracer in studies of weathering.

All other potassium isotopes have half-lives under a day, most under a minute. The least stable is, a three-proton emitter discovered in 2019; its half-life was measured to be shorter than 10 picoseconds.[3] [4]

Stable potassium isotopes have been used for several nutrient cycling studies since potassium is a macronutrient required for life.[5]

List of isotopes

|-id=Potassium-31| | style="text-align:right" | 19| style="text-align:right" | 12| 31.03678(32)#| <10 ps| 3p| 28S| 3/2+#|||-id=Potassium-34| 34K[6] | style="text-align:right" | 19| style="text-align:right" | 15| 33.998404(18)| | p| 33Ar| |||-id=Potassium-35| rowspan=2|35K| rowspan=2 style="text-align:right" | 19| rowspan=2 style="text-align:right" | 16| rowspan=2|34.98800541(55)| rowspan=2|175.2(19) ms| β+ (99.63%)| 35Ar| rowspan=2|3/2+| rowspan=2|| rowspan=2||-| β+, p (0.37%)| 34Cl|-id=Potassium-36| rowspan=3|36K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 17| rowspan=3|35.98130189(35)| rowspan=3|341(3) ms| β+ (99.95%)| 36Ar| rowspan=3|2+| rowspan=3|| rowspan=3||-| β+, p (0.048%)| 35Cl|-| β+, α (0.0034%)| 32S|-id=Potassium-37| 37K| style="text-align:right" | 19| style="text-align:right" | 18| 36.97337589(10)| 1.23651(94) s| β+| 37Ar| 3/2+|||-id=Potassium-38| 38K| style="text-align:right" | 19| style="text-align:right" | 19| 37.96908111(21)| 7.651(19) min| β+| 38Ar| 3+|||-id=Potassium-38m1| rowspan=2 style="text-indent:1em" | 38m1K| rowspan=2 colspan="3" style="text-indent:2em" | 130.15(4) keV| rowspan=2|924.35(12) ms| β+ (99.97%)| 38Ar| rowspan=2|0+| rowspan=2|| rowspan=2||-| IT (0.0330%)| 38K|-id=Potassium-38m2| style="text-indent:1em" | 38m2K| colspan="3" style="text-indent:2em" | 3458.10(17) keV| 21.95(11) μs| IT| 38K| (7)+|||-id=Potassium-39| 39K| style="text-align:right" | 19| style="text-align:right" | 20| 38.9637064848(49)| colspan=3 align=center|Stable| 3/2+| 0.932581(44)||-| rowspan=3|40K[7] [8] | rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 21| rowspan=3|39.963998165(60)| rowspan=3|1.248(3)×109 y| β (89.28%)| 40Ca| rowspan=3|4−| rowspan=3|1.17(1)×10−4| rowspan=3||-| EC (10.72%)| rowspan=2|40Ar|-|-| β+ (0.001%)[9] |-id=Potassium-40m| style="text-indent:1em" | 40mK| colspan="3" style="text-indent:2em" | 1643.638(11) keV| 336(12) ns| IT| 40K| 0+|||-id=Potassium-41| 41K| style="text-align:right" | 19| style="text-align:right" | 22| 40.9618252561(40)| colspan=3 align=center|Stable| 3/2+| 0.067302(44)||-id=Potassium-42| 42K| style="text-align:right" | 19| style="text-align:right" | 23| 41.96240231(11)| 12.355(7) h| β| 42Ca| 2−| Trace[10] ||-id=Potassium-43| 43K| style="text-align:right" | 19| style="text-align:right" | 24| 42.96073470(44)| 22.3(1) h| β| 43Ca| 3/2+|||-id=Potassium-43m| style="text-indent:1em" | 43mK| colspan=3 style="text-indent:2em" | 738.30(6) keV| 200(5) ns| IT| 43K| 7/2−|||-id=Potassium-44| 44K| style="text-align:right" | 19| style="text-align:right" | 25| 43.96158698(45)| 22.13(19) min| β| 44Ca| 2−|||-id=Potassium-45| 45K| style="text-align:right" | 19| style="text-align:right" | 26| 44.96069149(56)| 17.8(6) min| β| 45Ca| 3/2+|||-id=Potassium-46| 46K| style="text-align:right" | 19| style="text-align:right" | 27| 45.96198158(78)| 96.30(8) s| β| 46Ca| 2−|||-id=Potassium-47| 47K| style="text-align:right" | 19| style="text-align:right" | 28| 46.9616616(15)| 17.38(3) s| β| 47Ca| 1/2+|||-id=Potassium-48| rowspan=2|48K| rowspan=2 style="text-align:right" | 19| rowspan=2 style="text-align:right" | 29| rowspan=2|47.96534118(83)| rowspan=2|6.83(14) s| β (98.86%)| 48Ca| rowspan=2|1−| rowspan=2|| rowspan=2||-| β, n (1.14%)| 47Ca|-id=Potassium-49| rowspan=2|49K| rowspan=2 style="text-align:right" | 19| rowspan=2 style="text-align:right" | 30| rowspan=2|48.96821075(86)| rowspan=2|1.26(5) s| β, n (86%)| 48Ca| rowspan=2|1/2+| rowspan=2|| rowspan=2||-| β (14%)| 49Ca|-id=Potassium-50| rowspan=3|50K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 31| rowspan=3|49.9723800(83)| rowspan=3|472(4) ms| β (71.4%)| 50Ca| rowspan=3|0−| rowspan=3|| rowspan=3||-| β, n (28.6%)| 49Ca|-| β, 2n?| 48Ca|-id=Potassium-50m| style="text-indent:1em" | 50mK| colspan=3 style="text-indent:2em" | 172.0(4) keV| 125(40) ns| IT| 50K| (2−)|||-id=Potassium-51| rowspan=3|51K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 32| rowspan=3|50.975828(14)| rowspan=3|365(5) ms| β, n (65%)| 50Ca| rowspan=3|3/2+| rowspan=3|| rowspan=3||-| β (35%)| 51Ca|-| β, 2n?| 49Ca|-id=Potassium-52| rowspan=3|52K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 33| rowspan=3|51.981602(36)| rowspan=3|110(4) ms| β, n (72.2%)| 51Ca| rowspan=3|2−#| rowspan=3|| rowspan=3||-| β (25.5%)| 52Ca|-| β, 2n (2.3%)| 50Ca|-id=Potassium-53| rowspan=3|53K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 34| rowspan=3|52.98680(12)| rowspan=3|30(5) ms| β, n (64%)| 52Ca| rowspan=3|3/2+| rowspan=3|| rowspan=3||-| β (26%)| 53Ca|-| β, 2n (10%)| 51Ca|-id=Potassium-54| rowspan=3|54K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 35| rowspan=3|53.99447(43)#| rowspan=3|10(5) ms| β| 54Ca| rowspan=3|2−#| rowspan=3|| rowspan=3||-| β, n?| 53Ca|-| β, 2n?| 52Ca|-id=Potassium-55| rowspan=3|55K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 36| rowspan=3|55.00051(54)#| rowspan=3|10# ms
[>620&nbsp;ns]| β?| 55Ca| rowspan=3|3/2+#| rowspan=3|| rowspan=3||-| β, n?| 54Ca|-| β, 2n?| 54Ca|-id=Potassium-56| rowspan=3|56K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 37| rowspan=3|56.00857(64)#| rowspan=3|5# ms
[>620&nbsp;ns]| β?| 56Ca| rowspan=3|2−#| rowspan=3|| rowspan=3||-| β, n?| 55Ca|-| β, 2n?| 54Ca|-id=Potassium-57| rowspan=3|57K| rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 38| rowspan=3|57.01517(64)#| rowspan=3|2# ms
[>400&nbsp;ns]| β?| 57Ca| rowspan=3|3/2+#| rowspan=3|| rowspan=3||-| β, n?| 56Ca|-| β, 2n?| 55Ca|-id=Potassium-59| rowspan=3|59K[1] [11] | rowspan=3 style="text-align:right" | 19| rowspan=3 style="text-align:right" | 40| rowspan=3|59.03086(86)#| rowspan=3|1# ms
[>400&nbsp;ns]| β?| 59Ca| rowspan=3|3/2+#| rowspan=3|| rowspan=3||-| β, n?| 58Ca|-| β, 2n?| 57Ca

See also

Notes and References

  1. Neufcourt . Léo . Cao . Yuchen . Nazarewicz . Witold . Olsen . Erik . Viens . Frederi . Neutron Drip Line in the Ca Region from Bayesian Model Averaging . Physical Review Letters . 14 February 2019 . 122 . 6 . 062502 . 10.1103/PhysRevLett.122.062502 . 30822058 . 1901.07632 . 2019PhRvL.122f2502N . 3.
  2. Web site: Radioactive Human Body . 2011-05-18.
  3. A peculiar atom shakes up assumptions of nuclear structure . Nature . 573 . 7773 . 167 . 6 September 2019 . 10.1038/d41586-019-02655-9 . 31506620 . 2019Natur.573T.167. . free .
  4. 10.1103/PhysRevLett.123.092502 . 31524489 . Physical Review Letters . 123 . 9 . 092502 . Kostyleva . D. . et al. . Towards the Limits of Existence of Nuclear Structure: Observation and First Spectroscopy of the Isotope 31K by Measuring Its Three-Proton Decay . 2019. 2019PhRvL.123i2502K . 1905.08154 . 159041565 .
  5. Web site: June 2022 . Soil potassium isotope composition during four million years of ecosystem development in Hawai'i . par.nsf.gov.
  6. Dronchi . N. . Charity . R. J. . Sobotka . L. G. . Brown . B. A. . Weisshaar . D. . Gade . A. . Brown . K. W. . Reviol . W. . Bazin . D. . Farris . P. J. . Hill . A. M. . Li . J. . Longfellow . B. . Rhodes . D. . Paneru . S. N. . Gillespie . S. A. . Anthony . A. K. . Rubino . E. . Biswas . S. . Evolution of shell gaps in the neutron-poor calcium region from invariant-mass spectroscopy of 37,38Sc, 35Ca, and 34K . Physical Review C . 110 . 3 . 2024-09-12 . 2469-9985 . 10.1103/PhysRevC.110.L031302.
  7. Used in potassium-argon dating
  8. [Primordial nuclide|Primordial]
  9. 126. 5. 1818. Engelkemeir. D. W.. Flynn. K. F.. Glendenin. L. E.. Positron Emission in the Decay of K40. Physical Review. 1962. 10.1103/PhysRev.126.1818. 1962PhRv..126.1818E .
  10. Decay product of 42Ar
  11. Discovery of this isotope is unconfirmed.