Interaction information explained
In probability theory and information theory, the interaction information is a generalization of the mutual information for more than two variables.
There are many names for interaction information, including amount of information,[1] information correlation,[2] co-information,[3] and simply mutual information. Interaction information expresses the amount of information (redundancy or synergy) bound up in a set of variables, beyond that which is present in any subset of those variables. Unlike the mutual information, the interaction information can be either positive or negative. These functions, their negativity and minima have a direct interpretation in algebraic topology.[4]
Definition
The conditional mutual information can be used to inductively define the interaction information for any finite number of variables as follows:
I(X1;\ldots;Xn+1)=I(X1;\ldots;Xn)-I(X1;\ldots;Xn\midXn+1),
where
I(X1;\ldots;Xn\midXn+1)=
(I(X1;\ldots;Xn)\midXn+1).
Some authors
[5] define the interaction information differently, by swapping the two terms being subtracted in the preceding equation. This has the effect of reversing the sign for an odd number of variables.
For three variables
, the interaction information
is given by
I(X;Y;Z)=I(X;Y)-I(X;Y\midZ)
where
is the mutual information between variables
and
, and
is the
conditional mutual information between variables
and
given
. The interaction information is
symmetric, so it does not matter which variable is conditioned on. This is easy to see when the interaction information is written in terms of entropy and joint entropy, as follows:
\begin{alignat}{3}
I(X;Y;Z)&=&& l(H(X)+H(Y)+H(Z)r)\\
&&&-l(H(X,Y)+H(X,Z)+H(Y,Z)r)\\
&&&+H(X,Y,Z)
\end{alignat}
In general, for the set of variables
, the interaction information can be written in the following form (compare with
Kirkwood approximation):
I(l{V})=\suml{T\subseteql{V}}(-1)\left\vertl{T\right\vert-1}H(l{T})
For three variables, the interaction information measures the influence of a variable
on the amount of information shared between
and
. Because the term
can be larger than
, the interaction information can be negative as well as positive. This will happen, for example, when
and
are independent but not conditionally independent given
. Positive interaction information indicates that variable
inhibits (i.e.,
accounts for or
explains some of) the correlation between
and
, whereas negative interaction information indicates that variable
facilitates or enhances the correlation.
Properties
Interaction information is bounded. In the three variable case, it is bounded by[6]
-min\{I(X;Y\midZ),I(Y;Z\midX),I(X;Z\midY)\}\leqI(X;Y;Z)\leqmin\{I(X;Y),I(Y;Z),I(X;Z)\}
If three variables form a Markov chain
, then
, but
. Therefore
I(X;Y;Z)=I(X;Z)-I(X;Z\midY)=I(X;Z)\ge0.
Examples
Positive interaction information
Positive interaction information seems much more natural than negative interaction information in the sense that such explanatory effects are typical of common-cause structures. For example, clouds cause rain and also block the sun; therefore, the correlation between rain and darkness is partly accounted for by the presence of clouds,
I(rain;dark\midcloud)<I(rain;dark)
. The result is positive interaction information
.
Negative interaction information
A car's engine can fail to start due to either a dead battery or a blocked fuel pump. Ordinarily, we assume that battery death and fuel pump blockage are independent events,
I(blockedfuel;deadbattery)=0
. But knowing that the car fails to start, if an inspection shows the battery to be in good health, we can conclude that the fuel pump must be blocked. Therefore
I(blockedfuel;deadbattery\midenginefails)>0
, and the result is negative interaction information.
Difficulty of interpretation
The possible negativity of interaction information can be the source of some confusion. Many authors have taken zero interaction information as a sign that three or more random variables do not interact, but this interpretation is wrong.[7]
\{X1,X2,X3,X4,X5,X6,X7,X8\}
. Agglomerate these variables as follows:
\begin{align}
Y1&=\{X1,X2,X3,X4,X5,X6,X7\}\\
Y2&=\{X4,X5,X6,X7\}\\
Y3&=\{X5,X6,X7,X8\}\end{align}
Because the
's overlap each other (are redundant) on the three binary variables
, we would expect the interaction information
to equal
bits, which it does. However, consider now the agglomerated variables
\begin{align}
Y1&=\{X1,X2,X3,X4,X5,X6,X7\}\\
Y2&=\{X4,X5,X6,X7\}\\
Y3&=\{X5,X6,X7,X8\}\\
Y4&=\{X7,X8\}
\end{align}
These are the same variables as before with the addition of
. However,
in this case is actually equal to
bit, indicating less redundancy. This is correct in the sense that
\begin{align}
I(Y1;Y2;Y3;Y4)&=I(Y1;Y2;Y3)-I(Y1;Y2;Y3|Y4)\\
&=3-2\\
&=1
\end{align}
but it remains difficult to interpret.
Uses
- Jakulin and Bratko (2003b) provide a machine learning algorithm which uses interaction information.
- Killian, Kravitz and Gilson (2007) use mutual information expansion to extract entropy estimates from molecular simulations.[8]
- LeVine and Weinstein (2014) use interaction information and other N-body information measures to quantify allosteric couplings in molecular simulations.[9]
- Moore et al. (2006), Chanda P, Zhang A, Brazeau D, Sucheston L, Freudenheim JL, Ambrosone C, Ramanathan M. (2007) and Chanda P, Sucheston L, Zhang A, Brazeau D, Freudenheim JL, Ambrosone C, Ramanathan M. (2008) demonstrate the use of interaction information for analyzing gene-gene and gene-environmental interactions associated with complex diseases.
- Pandey and Sarkar (2017) use interaction information in Cosmology to study the influence of large-scale environments on galaxy properties.
- A python package for computing all multivariate interaction or mutual informations, conditional mutual information, joint entropies, total correlations, information distance in a dataset of n variables is available .[10]
See also
References
- Baudot . P. . Bennequin . D. . 2015 . The homological nature of entropy . Entropy . 17 . 5. 1–66 . 10.3390/e17053253. 2015Entrp..17.3253B . free .
- Bell, A J (2003), The co-information lattice http://www.kecl.ntt.co.jp/icl/signal/ica2003/cdrom/data/0187.pdf
- Fano, R M (1961), Transmission of Information: A Statistical Theory of Communications, MIT Press, Cambridge, MA.
- Garner W R (1962). Uncertainty and Structure as Psychological Concepts, JohnWiley & Sons, New York.
- Han . T S . 1978 . Nonnegative entropy measures of multivariate symmetric correlations . Information and Control . 36 . 2. 133–156 . 10.1016/s0019-9958(78)90275-9. free .
- Han . T S . 1980 . Multiple mutual information and multiple interactions in frequency data . Information and Control . 46 . 26–45 . 10.1016/s0019-9958(80)90478-7. free .
- Hu Kuo Tin (1962), On the Amount of Information. Theory Probab. Appl.,7(4), 439-44. PDF
- Jakulin A & Bratko I (2003a). Analyzing Attribute Dependencies, in N Lavra\quad, D Gamberger, L Todorovski & H Blockeel, eds, Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Springer, Cavtat-Dubrovnik, Croatia, pp. 229–240.
- Jakulin A & Bratko I (2003b). Quantifying and visualizing attribute interactions https://arxiv.org/abs/cs/0308002v1.
- Margolin . A . Wang . K . Califano . A . Nemenman . I . 2010 . Multivariate dependence and genetic networks inference . IET Syst Biol . 4 . 6. 428–440 . 10.1049/iet-syb.2010.0009. 21073241 . 1001.1681 . 14280921 .
- McGill . W J . 1954 . Multivariate information transmission . Psychometrika . 19 . 2. 97–116 . 10.1007/bf02289159. 126431489 .
- Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006). A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility, Journal of Theoretical Biology 241, 252-261. https://www.ncbi.nlm.nih.gov/pubmed/16457852?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
- Nemenman I (2004). Information theory, multivariate dependence, and genetic network inference https://arxiv.org/abs/q-bio.QM/0406015.
- Pearl, J (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, CA.
- Tsujishita, T (1995), On triple mutual information, Advances in applied mathematics 16, 269-274.
- Chanda . P . Zhang . A . Brazeau . D . Sucheston . L . Freudenheim . JL . Ambrosone . C . Ramanathan . M . 2007 . Information-theoretic metrics for visualizing gene-environment interactions . American Journal of Human Genetics . 81 . 5. 939–63 . 10.1086/521878 . 17924337 . 2265645.
- Chanda . P . Sucheston . L . Zhang . A . Brazeau . D . Freudenheim . JL . Ambrosone . C . Ramanathan . M . 2008 . AMBIENCE: a novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes . Genetics . 180 . 2. 1191–210 . 10.1534/genetics.108.088542. 18780753. 2567367.
- Killian . B J . Kravitz . J Y . Gilson . M K . 2007 . Extraction of configurational entropy from molecular simulations via an expansion approximation . J. Chem. Phys. . 127 . 2. 024107 . 10.1063/1.2746329. 17640119 . 2707031 . 2007JChPh.127b4107K .
- LeVine MV, Weinstein H (2014), NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT. PLoS Computational Biology. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003603
- Pandey . Biswajit . Sarkar . Suman . 2017 . How much a galaxy knows about its large-scale environment?: An information theoretic perspective . Monthly Notices of the Royal Astronomical Society Letters. 467 . 1. L6 . 10.1093/mnrasl/slw250. free . 1611.00283. 2017MNRAS.467L...6P. 119095496 .
- https://www3.nd.edu/~jnl/ee80653/Fall2005/tutorials/sunil.pdf
- Yeung R W (1992). A new outlook on Shannon's information measures. in IEEE Transactions on Information Theory. https://ieeexplore.ieee.org/document/79902
Notes and References
- Ting. Hu Kuo. January 1962. On the Amount of Information. Theory of Probability & Its Applications. 7. 4. 439–447. 10.1137/1107041. 0040-585X.
- David. Wolf. The Generalization of Mutual Information as the Information between a Set of Variables: The Information Correlation Function Hierarchy and the Information Structure of Multi-Agent Systems. NASA Ames Research Center. May 1, 1996.
- Bell. Anthony. 2003. The co-information lattice. 4th Int. Symp. Independent Component Analysis and Blind Source Separation.
- Baudot. Pierre. Bennequin. Daniel. 2015-05-13. The Homological Nature of Entropy. Entropy. 17. 5. 3253–3318. 10.3390/e17053253. 2015Entrp..17.3253B . 1099-4300. free.
- McGill. William J.. June 1954. Multivariate information transmission. Psychometrika. 19. 2. 97–116. 10.1007/bf02289159. 126431489 . 0033-3123.
- Yeung. R.W.. May 1991. A new outlook on Shannon's information measures. IEEE Transactions on Information Theory. 37. 3. 466–474. 10.1109/18.79902. 0018-9448.
- Krippendorff. Klaus. August 2009. Information of interactions in complex systems. International Journal of General Systems. en. 38. 6. 669–680. 10.1080/03081070902993160. 13923485 . 0308-1079.
- Killian . Benjamin J. . Yundenfreund Kravitz . Joslyn . Gilson . Michael K. . 2007-07-14 . Extraction of configurational entropy from molecular simulations via an expansion approximation . The Journal of Chemical Physics . en . 127 . 2 . 024107 . 10.1063/1.2746329 . 0021-9606 . 2707031 . 17640119. 2007JChPh.127b4107K .
- LeVine . Michael V. . Perez-Aguilar . Jose Manuel . Weinstein . Harel . 2014-06-18 . N-body Information Theory (NbIT) Analysis of Rigid-Body Dynamics in Intracellular Loop 2 of the 5-HT2A Receptor . q-bio.BM . 1406.4730 .
- Web site: InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github. github.com/pierrebaudot/infotopopy/. 26 September 2020.