\Deltad,k
d
k
d
k
d-k
\Deltad,k
d
[0,1]d
x1+ … +xd=k
(d-1)
0<k<d
The number of vertices of
\Deltad,k
\tbinomdk
\Deltad,k
J(d,k)
An alternative construction (for
0<k<d
(d-1)
(0,1)
k-1
k
The hypersimplex
\Deltad,k
d
k
The hypersimplex
\Deltad,1
(d-1)
d
\Delta4,2
\Delta5,2
Generally, the hypersimplex,
\Deltad,k
(k-1)
(d-1)
(k-1)
(d-1)
Name | Equilateral triangle | Tetrahedron (3-simplex) | Octahedron | 5-cell (4-simplex) | Rectified 5-cell | 5-simplex | Rectified 5-simplex | Birectified 5-simplex | |
---|---|---|---|---|---|---|---|---|---|
(3,1) (3,2) | (4,1) (4,3) | (4,2) | (5,1) (5,4) | (5,2) (5,3) | (6,1) (6,5) | (6,2) (6,4) | (6,3) | ||
Vertices \tbinom{d}{k} | 3 | 4 | 6 | 5 | 10 | 6 | 15 | 20 | |
d-coordinates | (0,0,1) (0,1,1) | (0,0,0,1) (0,1,1,1) | (0,0,1,1) | (0,0,0,0,1) (0,1,1,1,1) | (0,0,0,1,1) (0,0,1,1,1) | (0,0,0,0,0,1) (0,1,1,1,1,1) | (0,0,0,0,1,1) (0,0,1,1,1,1) | (0,0,0,1,1,1) | |
Image | |||||||||
valign=center | Graphs | J(3,1) = K2 | J(4,1) = K3 | J(4,2) = T(6,3) | J(5,1) = K4 | J(5,2) | J(6,1) = K5 | J(6,2) | J(6,3) |
Coxeter diagrams | |||||||||
Schläfli symbols | = r | = 2r | r = | = 3r | r = 2r | = 4r | r = 3r | 2r | |
Facets | , | , r | r |
The hypersimplices were first studied and named in the computation of characteristic classes (an important topic in algebraic topology), by .[4] [5]