Honey Explained

Honey is a sweet and viscous substance made by several species of bees, the best-known of which are honey bees.[1] [2] Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of plants (primarily floral nectar) or the secretions of other insects, like the honeydew of aphids. This refinement takes place both within individual bees, through regurgitation and enzymatic activity, and during storage in the hive, through water evaporation that concentrates the honey's sugars until it is thick and viscous.

Honey bees stockpile honey in the hive. Within the hive is a structure made from wax called honeycomb. The honeycomb is made up of hundreds or thousands of hexagonal cells, into which the bees regurgitate honey for storage. Other honey-producing species of bee store the substance in different structures, such as the pots made of wax and resin used by the stingless bee.

Honey for human consumption is collected from wild bee colonies, or from the hives of domesticated bees. The honey produced by honey bees is the most familiar to humans, thanks to its worldwide commercial production and availability.[3] The husbandry of bees is known as beekeeping or apiculture, with the cultivation of stingless bees usually referred to as meliponiculture.

Honey is sweet because of its high concentrations of the monosaccharides fructose and glucose. It has about the same relative sweetness as sucrose (table sugar).[4] [5] One standard tablespoon (15 mL) of honey provides around 46order=flipNaNorder=flip of food energy. It has attractive chemical properties for baking and a distinctive flavor when used as a sweetener. Most microorganisms cannot grow in honey and sealed honey therefore does not spoil. Samples of honey discovered in archaeological contexts have proven edible even after millennia.[6] [7]

Honey use and production has a long and varied history, with its beginnings in prehistoric times. Several cave paintings in Cuevas de la Araña in Spain depict humans foraging for honey at least 8,000 years ago. While Apis mellifera is an Old World insect, large-scale meliponiculture of New World stingless bees has been practiced by Mayans since pre-Columbian times.[8]

Formation

By honey bees

Honey is produced by bees who have collected nectar or honeydew. Bees value honey for its sugars, which they consume to support general metabolic activity, especially that of their flight muscles during foraging, and as a food for their larvae. To this end bees stockpile honey to provide for themselves during ordinary foraging as well as during lean periods, as in overwintering.[9] During foraging bees use part of the nectar they collect to power their flight muscles. The majority of nectar collected is not used to directly nourish the insects but is instead destined for regurgitation, enzymatic digestion, and finally long-term storage as honey.[10] During cold weather or when other food sources are scarce, adult and larval bees consume stored honey, which is many times as energy-dense as the nectar from which it is made.[11]

After leaving the hive, a foraging bee collects sugar-rich nectar or honeydew. Nectar from the flower generally has a water content of 70 to 80% and is much less viscous than finished honey, which usually has a water content around 18%.[12] [13] The water content of honeydew from aphids and other true bugs is generally very close to the sap on which those insects feed and is usually somewhat more dilute than nectar. One source describes the water content of honeydew as around 89%.[14] Whether it is feeding on nectar or honeydew, the bee sucks these runny fluids through its proboscis, which delivers the liquid to the bee's honey stomach or "honey crop". This cavity lies just above its food stomach, the latter of which digests pollen and sugars consumed by an individual honey bee for its own nourishment.

In Apis mellifera, the honey stomach holds about 40 mg of liquid. This is about half the weight of an unladen bee. Collecting this quantity in nectar can require visits to more than a thousand flowers. When nectar is plentiful, it can take a bee more than an hour of ceaseless work to collect enough nectar to fill its honey crop. Salivary enzymes and proteins from the bee's hypopharyngeal gland are secreted into the nectar once it is in the bee's honey stomach. These substances begin cleaving complex sugars like sucrose and starches into simpler sugars such as glucose and fructose. This process slightly raises the water content and the acidity of the partially digested nectar.[15]

Once filled, the forager bees return to the hive. There they regurgitate and transfer nectar to hive bees. Once it is in their own honey stomachs, the hive bees regurgitate the nectar, repeatedly forming bubbles between their mandibles, speeding its digestion and concentration. These bubbles create a large surface area per volume and by this means the bees evaporate a portion of the nectar's water into the warm air of the hive.[16]

Hive bees form honey-processing groups. These groups work in relay, with one bee subjecting the processed nectar to bubbling and then passing the refined liquid on to others. It can take as long as 20 minutes of continuous regurgitation, digestion and evaporation until the product reaches storage quality. The new honey is then placed in honeycomb cells, which are left uncapped. This honey still has a very high water content, up to 70%, depending on the concentration of nectar gathered. At this stage of its refinement the water content of the honey is high enough that ubiquitous yeast spores can reproduce in it, a process which, if left unchecked, would rapidly consume the new honey's sugars. To combat this, bees use an ability rare among insects: the endogenous generation of heat.

Bees are among the few insects that can create large amounts of body heat. They use this ability to produce a constant ambient temperature in their hives. Hive temperatures are usually around 35C in the honey-storage areas. This temperature is regulated either by generating heat with their bodies or removing it through water evaporation. The evaporation removes water from the stored honey, drawing heat from the colony. The bees use their wings to govern hive cooling. Coordinated wing beating moves air across the wet honey, drawing out water and heat. Ventilation of the hive eventually expels both excess water and heat into the outside world.

The process of evaporating continues until the honey reaches its final water content of between 15.5% to 18%. This concentrates the sugars far beyond the saturation point of water, which is to say there is far more sugar dissolved in what little water remains in honey than ever could be dissolved in an equivalent volume of water. Honey, even at hive temperatures, is therefore a supercooled solution of various sugars in water. These concentrations of sugar can only be achieved near room temperature by evaporation of a less concentrated solution, in this case nectar. For osmotic reasons such high concentrations of sugar are extremely unfavorable to microbiological reproduction and all fermentation is consequently halted. The bees then cap the cells of finished honey with wax. This seals them from contamination and prevents further evaporation.

So long as its water concentration does not rise much above 18%, honey has an indefinite shelf life, both within the hive and after its removal by a beekeeper.

By other insects

Honey bees are not the only eusocial insects to produce honey. All non-parasitic bumblebees and stingless bees produce honey. Some wasp species, such as Brachygastra lecheguana and Brachygastra mellifica, found in South and Central America, are known to feed on nectar and produce honey.[17] Other wasps, such as Polistes versicolor, also consume honey. In the middle of their life cycles they alternate between feeding on protein-rich pollen and feeding on honey, which is a far denser source of food energy.[18]

Human intervention

Human beings have semi-domesticated several species of honey bee by taking advantage of their swarming stage. Swarming is the means by which new colonies are established when there is no longer space for expansion in the colony's present hive. The old queen lays eggs that will develop into new queens and then leads as many as half the colony to a site for a new hive. Bees generally swarm before a suitable location for another hive has been discovered by scouts sent out for this purpose. Until such a location is found the swarm will simply conglomerate near the former hive, often from tree branches. These swarms are unusually docile and amenable to transport by humans. When provided with a suitable nesting site, such as a commercial Langstroth hive, the swarm will readily form a new colony in artificial surroundings. These semi-domesticated colonies are then looked after by humans practicing apiculture or meliponiculture. Captured bees are encouraged to forage, often in agricultural settings such as orchards, where pollinators are highly valued. The honey, pollen, wax and resins the bees produce are all harvested by humans for a variety of uses.[19]

The term "semi-domesticated" is preferred because all bee colonies, even those in very large agricultural apiculture operations, readily leave the protection of humans in swarms that can establish successful wild colonies. Much of the effort in commercial beekeeping is dedicated to persuading a hive that is ready to swarm to produce more honeycomb in its present location. This is usually done by adding more space to the colony with honey supers, empty boxes placed on top of an existing colony. The bees can then usually be enticed to develop this empty space instead of dividing their colony through swarming.[20]

Production

Collection

Honey is collected from wild bee colonies or from domesticated beehives. On average, a hive will produce about 65lb of honey per year.[21] Wild bee nests are sometimes located by following a honeyguide bird.

To safely collect honey from a hive, beekeepers typically pacify the bees using a bee smoker. The smoke triggers a feeding instinct (an attempt to save the resources of the hive from a possible fire), making them less aggressive, and obscures the pheromones the bees use to communicate. The honeycomb is removed from the hive and the honey may be extracted from it either by crushing or by using a honey extractor. The honey is then usually filtered to remove beeswax and other debris.

Before the invention of removable frames, bee colonies were often sacrificed to conduct the harvest. The harvester would take all the available honey and replace the entire colony the next spring. Since the invention of removable frames, the principles of husbandry led most beekeepers to ensure that their bees have enough stores to survive the winter, either by leaving some honey in the beehive or by providing the colony with a honey substitute such as sugar water or crystalline sugar (often in the form of a "candyboard"). The amount of food necessary to survive the winter depends on the variety of bees and on the length and severity of local winters.

Many animal species are attracted to wild or domestic sources of honey.[22]

Preservation

Because of its composition and chemical properties, honey is suitable for long-term storage, and is easily assimilated even after long preservation. Honey, and objects immersed in honey, have been preserved for centuries.[23] [24] (However, no edible honey has been found in Egyptian tombs; all such cases have been proven to be other substances or only chemical traces.[25]) The key to preservation is limiting access to humidity. In its cured state, honey has a sufficiently high sugar content to inhibit fermentation. If exposed to moist air, its hydrophilic properties pull moisture into the honey, eventually diluting it to the point that fermentation can begin.

The long shelf life of honey is attributed to an enzyme found in the stomach of bees. The bees mix glucose oxidase with expelled nectar they previously consumed, creating two byproducts – gluconic acid and hydrogen peroxide, which are partially responsible for honey acidity and suppression of bacterial growth.

Adulteration

Honey is sometimes adulterated by the addition of other sugars, syrups, or compounds to change its flavor or viscosity, reduce cost, or increase the fructose content to inhibit crystallization. Honey has been adulterated since ancient times, when honey was sometimes blended with plant syrups such as maple, birch, or sorghum and sold to customers as pure honey. Sometimes crystallized honey was mixed with flour or other fillers, hiding the adulteration from buyers until the honey was liquefied. In modern times, the most common adulterant became clear, almost-flavorless corn syrup; the adulterated mixture can be very difficult to distinguish from pure honey.[26]

According to the Codex Alimentarius of the United Nations, any product labeled as "honey" or "pure honey" must be a wholly natural product, although labeling laws differ between countries.[27] In the United States, according to the National Honey Board, "Ensuring honey authenticity is one of the great challenges facing the honey industry today. Over the past half century, a number of honey testing methods have been developed to detect food fraud. To date, there is no single universal analytical method available which is capable of detecting all types of adulteration with adequate sensitivity."[28]

Isotope ratio mass spectrometry can be used to detect addition of corn syrup and cane sugar by the carbon isotopic signature. Addition of sugars originating from corn or sugar cane (C4 plants, unlike the plants used by bees, and also sugar beet, which are predominantly C3 plants) skews the isotopic ratio of sugars present in honey, but does not influence the isotopic ratio of proteins. In an unadulterated honey, the carbon isotopic ratios of sugars and proteins should match. Levels as low as 7% of addition can be detected.

Worldwide production

Production of natural honey in 2020
CountryProduction
(tonnes)
458,100
104,077
79,955
74,403
68,028
66,948
World 1,770,119
Source: FAOSTAT[29]

In 2020, global production of honey was 1.8million tonnes, led by China with 26% of the world total (table). Other major producers were Turkey, Iran, Argentina, and Ukraine.

Modern uses

Food

See main article: Mellivory.

Over its history as a food, the main uses of honey are in cooking, baking, desserts, as a spread on bread, as an addition to various beverages such as tea, and as a sweetener in some commercial beverages.

Due to its energy density, honey is an important food for virtually all hunter-gatherer cultures in warm climates, with the Hadza people ranking honey as their favorite food.[30] Honey hunters in Africa have a mutualistic relationship with certain species of honeyguide birds.[31]

Fermentation

Possibly the world's oldest fermented beverage, dating from 9,000 years ago,[32] mead ("honey wine") is the alcoholic product made by adding yeast to honey-water must and fermenting it for weeks or months.[33] [34] The yeast Saccharomyces cerevisiae is commonly used in modern mead production.

Mead varieties include drinks called metheglin (with spices or herbs), melomel (with fruit juices, such as grape, specifically called pyment), hippocras (with cinnamon), and sack mead (high concentration of honey), many of which have been developed as commercial products numbering in the hundreds in the United States.[35] Honey is also used to make mead beer, called "braggot".[36]

Physical and chemical properties

The physical properties of honey vary, depending on water content, the type of flora used to produce it (pasturage), temperature, and the proportion of the specific sugars it contains. Fresh honey is a supersaturated liquid, containing more sugar than the water can typically dissolve at ambient temperatures. At room temperature, honey is a supercooled liquid, in which the glucose precipitates into solid granules. This forms a semisolid solution of precipitated glucose crystals in a solution of fructose and other ingredients.

The density of honey typically ranges between 1.38 and 1.45 kg/L at 20 °C.[37]

Phase transitions

The melting point of crystallized honey is between 40C50C, depending on its composition. Below this temperature, honey can be either in a metastable state, meaning that it will not crystallize until a seed crystal is added, or, more often, it is in a "labile" state, being saturated with enough sugars to crystallize spontaneously.[38] The rate of crystallization is affected by many factors, but the primary factor is the ratio of the main sugars: fructose to glucose. Honeys that are supersaturated with a very high percentage of glucose, such as brassica honey, crystallize almost immediately after harvesting, while honeys with a low percentage of glucose, such as chestnut or tupelo honey, do not crystallize. Some types of honey may produce few but very large crystals, while others produce many small crystals.[39]

Crystallization is also affected by water content, because a high percentage of water inhibits crystallization, as does a high dextrin content. Temperature also affects the rate of crystallization, with the fastest growth occurring between 13C17C. Crystal nuclei (seeds) tend to form more readily if the honey is disturbed, by stirring, shaking, or agitating, rather than if left at rest. However, the nucleation of microscopic seed-crystals is greatest between 5C8C. Therefore, larger but fewer crystals tend to form at higher temperatures, while smaller but more-numerous crystals usually form at lower temperatures. Below 5 °C, the honey will not crystallize, thus the original texture and flavor can be preserved indefinitely.

Honey is a supercooled liquid when stored below its melting point, as is normal. At very low temperatures, honey does not freeze solid; rather its viscosity increases. Like most viscous liquids, the honey becomes thick and sluggish with decreasing temperature. At -20C, honey may appear or even feel solid, but it continues to flow at very low rates. Honey has a glass transition between -42C-51C. Below this temperature, honey enters a glassy state and becomes an amorphous solid (noncrystalline).[40] [41]

Rheology

The viscosity of honey is affected greatly by both temperature and water content. The higher the water percentage, the more easily honey flows. Above its melting point, however, water has little effect on viscosity. Aside from water content, the composition of most types of honey also has little effect on viscosity. At 25C, honey with 14% water content generally has a viscosity around 400 poise, while a honey containing 20% water has a viscosity around 20 poise. Viscosity increases very slowly with moderate cooling; a honey containing 16% water, at 70C, has a viscosity around 2 poise, while at 30C, the viscosity is around 70 poise. With further cooling, the increase in viscosity is more rapid, reaching 600 poise at around 14C.[42] [43] However, while honey is viscous, it has low surface tension of 50–60 mJ/m2, making its wettability similar to water, glycerin, or most other liquids.[44] The high viscosity and wettability of honey cause stickiness, which is a time-dependent process in supercooled liquids between the glass-transition temperature (Tg) and the crystalline-melting temperature.[45]

Most types of honey are Newtonian liquids, but a few types have non-Newtonian viscous properties. Honeys from heather or manuka display thixotropic properties. These types of honey enter a gel-like state when motionless, but liquefy when stirred.[46]

Electrical and optical properties

Because honey contains electrolytes, in the form of acids and minerals, it exhibits varying degrees of electrical conductivity. Measurements of the electrical conductivity are used to determine the quality of honey in terms of ash content.

The effect honey has on light is useful for determining the type and quality. Variations in its water content alter its refractive index. Water content can easily be measured with a refractometer. Typically, the refractive index for honey ranges from 1.504 at 13% water content to 1.474 at 25%. Honey also has an effect on polarized light, in that it rotates the polarization plane. The fructose gives a negative rotation, while the glucose gives a positive one. The overall rotation can be used to measure the ratio of the mixture.[47] Honey is generally pale yellow and dark brown in color, but other colors can occur, depending on the sugar source.[48] Bee colonies that forage on Kudzu (Pueraria montana var. lobata) flowers, for example, produce honey that varies in color from red to purple.[49]

Hygroscopy and fermentation

Honey has the ability to absorb moisture directly from the air, a phenomenon called hygroscopy. The amount of water the honey absorbs is dependent on the relative humidity of the air. Because honey contains yeast, this hygroscopic nature requires that honey be stored in sealed containers to prevent fermentation, which usually begins if the honey's water content rises much above 25%. Honey tends to absorb more water in this manner than the individual sugars allow on their own, which may be due to other ingredients it contains.

Fermentation of honey usually occurs after crystallization, because without the glucose, the liquid portion of the honey primarily consists of a concentrated mixture of fructose, acids, and water, providing the yeast with enough of an increase in the water percentage for growth. Honey that is to be stored at room temperature for long periods of time is often pasteurized, to kill any yeast, by heating it above 70C.

Thermal characteristics

Like all sugar compounds, honey caramelizes if heated sufficiently, becoming darker in color, and eventually burns. However, honey contains fructose, which caramelizes at lower temperatures than glucose.[50] The temperature at which caramelization begins varies, depending on the composition, but is typically between 70C110C. Honey also contains acids, which act as catalysts for caramelization. The specific types of acids and their amounts play a primary role in determining the exact temperature.[51] Of these acids, the amino acids, which occur in very small amounts, play an important role in the darkening of honey. The amino acids form darkened compounds called melanoidins, during a Maillard reaction. The Maillard reaction occurs slowly at room temperature, taking from a few to several months to show visible darkening, but speeds up dramatically with increasing temperatures. However, the reaction can also be slowed by storing the honey at colder temperatures.[52]

Unlike many other liquids, honey has very poor thermal conductivity of 0.5 W/(m⋅K) at 13% water content (compared to 401 W/(m⋅K) of copper), taking a long time to reach thermal equilibrium.[53] Due to its high kinematic viscosity honey does not transfer heat through momentum diffusion (convection) but rather through thermal diffusion (more like a solid), so melting crystallized honey can easily result in localized caramelization if the heat source is too hot or not evenly distributed. However, honey takes substantially longer to liquefy when just above the melting point than at elevated temperatures. Melting of crystallized honey at 40C can take up to 24 hours, while may take twice as long. These times can be cut nearly in half by heating at 50C; however, many of the minor substances in honey can be affected greatly by heating, changing the flavor, aroma, or other properties, so heating is usually done at the lowest temperature and for the shortest time possible.[54]

Acid content and flavor effects

The average pH of honey is 3.9, but can range from 3.4 to 6.1.[55] Honey contains many kinds of acids, both organic and amino. However, the different types and their amounts vary considerably, depending on the type of honey. These acids may be aromatic or aliphatic (nonaromatic). The aliphatic acids contribute greatly to the flavor of honey by interacting with the flavors of other ingredients.

Organic acids comprise most of the acids in honey, accounting for 0.17–1.17% of the mixture, with gluconic acid formed by the actions of glucose oxidase as the most prevalent. Minor amounts of other organic acids are present, consisting of formic, acetic, butyric, citric, lactic, malic, pyroglutamic, propionic, valeric, capronic, palmitic, and succinic, among many others.[56]

Volatile organic compounds

Individual honeys from different plant sources contain over 100 volatile organic compounds (VOCs), which play a primary role in determining honey flavors and aromas.[57] [58] [59] VOCs are carbon-based compounds that readily vaporize into the air, providing aroma, including the scents of flowers, essential oils, or ripening fruit. The typical chemical families of VOCs found in honey include hydrocarbons, aldehydes, alcohols, ketones, esters, acids, benzenes, furans, pyrans, norisoprenoids, and terpenes, among many others and their derivatives. The specific VOCs and their amounts vary considerably between different types of honey obtained by bees foraging on different plant sources. By example, when comparing the mixture of VOCs in different honeys in one review, longan honey had a higher amount of volatiles (48 VOCs), while sunflower honey had the lowest number of volatiles (8 VOCs).

VOCs are primarily introduced into the honey from the nectar, where they are excreted by the flowers imparting individual scents. The specific types and concentrations of certain VOCs can be used to determine the type of flora used to produce monofloral honeys. The specific geography, soil composition and acidity used to grow the flora also have an effect on honey aroma properties, such as a "fruity" or "grassy" aroma from longan honey, or a "waxy" aroma from sunflower honey. Dominant VOCs in one study were linalool oxide, trans-linalool oxide, 2-phenylacetaldehyde, benzyl ethanol, isophorone, and methyl nonanoate.

VOCs can also be introduced from the bodies of the bees, be produced by the enzymatic actions of digestion, or from chemical reactions that occur between different substances within the honey during storage, and therefore may change, increase, or decrease over long periods of time. VOCs may be produced, altered, or greatly affected by temperature and processing. Some VOCs are heat labile, and are destroyed at elevated temperatures, while others can be created during non-enzymatic reactions, such as the Maillard reaction. VOCs are responsible for nearly all of the aroma produced by a honey, which may be described as "sweet", "flowery", "citrus", "almond" or "rancid", among other terms. In addition, VOCs play a large role in determining the specific flavor of the honey, both through the aromas and flavor. VOCs from honeys in different geographic regions can be used as floral markers of those regions, and as markers of the bees that foraged the nectars.

Classification

Honey is classified by its source (floral or not), and divisions are made according to the packaging and processing used. Regional honeys are also identified. In the US, honey is also graded on its color and optical density by USDA standards, graded on the Pfund scale, which ranges from 0 for "water white" honey to more than 114 for "dark amber" honey.[60]

Plant source

Generally, honey is classified by the floral source of the nectar from which it was made. Honeys can be from specific types of flower nectars or can be blended after collection. The pollen in honey is traceable to floral source and therefore region of origin. The rheological and melissopalynological properties of honey can be used to identify the major plant nectar source used in its production.[61]

Monofloral

Monofloral honey is made primarily from the nectar of one type of flower. Monofloral honeys have distinctive flavors and colors because of differences between their principal nectar sources.[62] To produce monofloral honey, beekeepers keep beehives in an area where the bees have access, as far as possible, to only one type of flower. In practice, a small proportion of any monofloral honey will be from other flower types. Typical examples of North American monofloral honeys are clover, orange blossom, sage, tupelo, buckwheat, fireweed, mesquite, sourwood, cherry, and blueberry. Some typical European examples include thyme, thistle, heather, acacia, dandelion, sunflower, lavender, honeysuckle, and varieties from lime and chestnut trees. In North Africa (e.g. Egypt), examples include clover, cotton, and citrus (mainly orange blossoms). The unique flora of Australia yields a number of distinctive honeys, with some of the most popular being yellow box, blue gum, ironbark, bush mallee, Tasmanian leatherwood, and macadamia.

Polyfloral

Polyfloral honey, also known as wildflower honey,[63] is derived from the nectar of many types of flowers.[64] The taste may vary from year to year, and the aroma and the flavor can be more or less intense, depending on which flowers are blooming.

Honeydew honey

Honeydew honey is made from bees taking direct secretions from trees such as pine, fir, chestnut, and oak or primarily honeydew, the sweet secretions of aphids or other plant-sap-sucking insects, to produce honey rather than from nectar.[65] [66] This honey has a much larger proportion of indigestibles than light floral honeys, thus causing dysentery to the bees.[67] Honeydew honey has a stronger and less sweet flavor than nectar-based honey, and European countries have been the primary market for honeydew honey.[65] In Greece, pine honey, a type of honeydew honey, constitutes 60–65% of honey production.[68]

Classification by packaging and processing

Generally, honey is bottled in its familiar liquid form, but it is sold in other forms, and can be subjected to a variety of processing methods.

Grading

See also: Food grading.

Countries have differing standards for grading honey.In the US, honey grading is performed voluntarily based upon USDA standards. USDA offers inspection and grading "as on-line (in-plant) or lot inspection...upon application, on a fee-for-service basis." Honey is graded based upon a number of factors, including water content, flavor and aroma, absence of defects, and clarity. Honey is also classified by color, though it is not a factor in the grading scale.[85]

The USDA honey grade scale is:

GradeSoluble solidsFlavor and aromaAbsence of defectsClarity
A≥ 81.4%Good—"has a good, normal flavor and aroma for the predominant floral source or, when blended, a good flavor for the blend of floral sources and the honey is free from caramelized flavor or objectionable flavor caused by fermentation, smoke, chemicals, or other causes with the exception of the predominant floral source"Practically free—"contains practically no defects that affect the appearance or edibility of the product"Clear—"may contain air bubbles which do not materially affect the appearance of the product and may contain a trace of pollen grains or other finely divided particles of suspended material which do not affect the appearance of the product"
B≥ 81.4%Reasonably good—"has a reasonably good, normal flavor and aroma for the predominant floral source or, when blended, a reasonably good flavor for the blend of floral sources and the honey is practically free from caramelized flavor and is free from objectionable flavor caused by fermentation, smoke, chemicals, or other causes with the exception of the predominant floral source"Reasonably free—"may contain defects which do not materially affect the appearance or edibility of the product"Reasonably clear—"may contain air bubbles, pollen grains, or other finely divided particles of suspended material which do not materially affect the appearance of the product"
C≥ 80.0%Fairly good—"has a fairly good, normal flavor and aroma for the predominant floral source or, when blended, a fairly good flavor for the blend of floral sources and the honey is reasonably free from caramelized flavor and is free from objectionable flavor caused by fermentation, smoke, chemicals, or other causes with the exception of the predominant floral source"Fairly free—"may contain defects which do not seriously affect the appearance or edibility of the product"Fairly clear—"may contain air bubbles, pollen grains, or other finely divided particles of suspended material which do not seriously affect the appearance of the product"
SubstandardFails Grade CFails Grade CFails Grade CFails Grade C

India certifies honey grades based on additional factors, such as the Fiehe's test, and other empirical measurements.[86]

Indicators of quality

High-quality honey can be distinguished by fragrance, taste, and consistency. Ripe, freshly collected, high-quality honey at 20°C should flow from a knife in a straight stream, without breaking into separate drops.[87] After falling down, the honey should form a bead. The honey, when poured, should form small, temporary layers that disappear fairly quickly, indicating high viscosity. If not, it indicates honey with excessive water content of over 20%, not suitable for long-term preservation.[88]

In jars, fresh honey should appear as a pure, consistent fluid, and should not set in layers. Within a few weeks to a few months of extraction, many varieties of honey crystallize into a cream-colored solid. Some varieties of honey, including tupelo, acacia, and sage, crystallize less regularly. Honey may be heated during bottling at temperatures of 40C49C to delay or inhibit crystallization. Overheating is indicated by change in enzyme levels, for instance, diastase activity, which can be determined with the Schade or the Phadebas methods. A fluffy film on the surface of the honey (like a white foam), or marble-colored or white-spotted crystallization on a container's sides, is formed by air bubbles trapped during the bottling process.

A 2008 Italian study determined that nuclear magnetic resonance spectroscopy can be used to distinguish between different honey types, and can be used to pinpoint the area where it was produced. Researchers were able to identify differences in acacia and polyfloral honeys by the differing proportions of fructose and sucrose, as well as differing levels of aromatic amino acids phenylalanine and tyrosine. This ability allows greater ease of selecting compatible stocks.[89]

Nutrition

One hundred grams of honey provides about 304order=flipNaNorder=flip of energy with no significant amounts of essential nutrients.[90] Composed of 17% water and 82% carbohydrates, honey has low content of fat, dietary fiber, and protein.

Sugar profile

A mixture of sugars and other carbohydrates, honey is mainly fructose (about 38%) and glucose (about 32%), with remaining sugars including maltose, sucrose, and other complex carbohydrates. Its glycemic index ranges from 31 to 78, depending on the variety.[91] The specific composition, color, aroma, and flavor of any batch of honey depend on the flowers foraged by bees that produced the honey.[92]

One 1980 study found that mixed floral honey from several United States regions typically contains the following:[93]

This means that 55% of the combined fructose and glucose content was fructose and 45% was glucose, which enables comparison with the essentially identical result (average of 56% and 44%) in the study described below:

A 2013 NMR spectroscopy study of 20 different honeys from Germany found that their sugar contents comprised:

The average ratio was 56% fructose to 44% glucose, but the ratios in the individual honeys ranged from a high of 64% fructose and 36% glucose (one type of flower honey; table 3 in reference) to a low of 50% fructose and 50% glucose (a different floral source). This NMR method was not able to quantify maltose, galactose, and the other minor sugars as compared to fructose and glucose.[94]

Medical use and research

See also: Apitherapy.

Wounds and burns

Honey is a folk treatment for burns and other skin injuries. Preliminary evidence suggests that it aids in the healing of partial thickness burns 4–5 days faster than other dressings, and moderate evidence suggests that post-operative infections treated with honey heal faster and with fewer adverse events than with antiseptic and gauze.[95] The evidence for the use of honey in various other wound treatments is of low quality, and firm conclusions cannot be drawn.[96] Evidence does not support the use of honey-based products for the treatment of venous stasis ulcers or ingrown toenail.[97] [98] Several medical-grade honey products have been approved by the US Food and Drug Administration for use in treating minor wounds and burns.[99]

Antibiotic

Honey has long been used as a topical antibiotic by practitioners of traditional and herbal medicine.[100] [101] Honey's antibacterial effects were first demonstrated by the Dutch scientist Bernardus Adrianus van Ketel in 1892.[102] [103] Since then, numerous studies have shown that honey has broad-spectrum antibacterial activity against gram-positive and gram-negative bacteria, although potency varies widely between different honeys.[104] [105] Due to the proliferation of antibiotic-resistant bacteria in the last few decades, there has been renewed interest in researching the antibacterial properties of honey. Components of honey under preliminary research for potential antibiotic use include methylglyoxal, hydrogen peroxide, and royalisin (also called defensin-1).[106] [107]

Cough

For chronic and acute coughs, a Cochrane review found no strong evidence for or against the use of honey.[108] [109] For treating children, the systematic review concluded with moderate to low evidence that honey helps more than no treatment, diphenhydramine, and placebo at giving relief from coughing. Honey does not appear to work better than dextromethorphan at relieving coughing in children. Other reviews have also supported the use of honey for treating children.[110] [111]

The UK Medicines and Healthcare products Regulatory Agency recommends avoiding giving over-the-counter cough and common cold medication to children under six, and suggests "a homemade remedy containing honey and lemon is likely to be just as useful and safer to take", but warns that honey should not be given to babies because of the risk of infant botulism.[112] The World Health Organization recommends honey as a treatment for coughs and sore throats, including for children, stating that no reason exists to believe it is less effective than a commercial remedy.[113]

Other

The use of honey has been recommended as a temporary intervention for known or suspected button cell battery ingestions to reduce the risk and severity of injury to the esophagus caused by the battery prior to its removal.[114] [115] [116]

There is no evidence that honey is beneficial for treating cancer,[117] although honey may be useful for controlling side effects of radiation therapy or chemotherapy used to treat cancer.[118]

Consumption is sometimes advocated as a treatment for seasonal allergies due to pollen, but scientific evidence to support the claim is inconclusive. Honey is generally considered ineffective for the treatment of allergic conjunctivitis.[119]

The majority of calories in honey are from fructose. When consumed in addition to a normal diet, fructose causes significant weight gain, but when fructose was substituted for other carbohydrates of equal energy value there was no effect on body weight.[120]

Honey has a mild laxative effect which has been noted as being helpful in alleviating constipation and bloating.[121]

Health hazards

Honey is generally safe when taken in typical food amounts, but it may have various, potential adverse effects or interactions in combination with excessive consumption, existing disease conditions, or drugs. Included among these are mild reactions to high intake, such as anxiety, insomnia, or hyperactivity in about 10% of children, according to one study. No symptoms of anxiety, insomnia, or hyperactivity were detected with honey consumption compared to placebo, according to another study. Honey consumption may interact adversely with existing allergies, high blood sugar levels (as in diabetes), or anticoagulants used to control bleeding, among other clinical conditions.

People who have a weakened immune system may be at risk of bacterial or fungal infection from eating honey.[122]

Botulism

Infants can develop botulism after consuming honey contaminated with Clostridium botulinum endospores.[123]

Infantile botulism shows geographical variation. In the UK, only six cases were reported between 1976 and 2006,[124] yet the US has much higher rates: 1.9 per 100,000 live births, 47.2% of which are in California.[125] While the risk honey poses to infant health is small, taking the risk is not recommended until after one year of age, and then giving honey is considered safe.[126]

Toxic honey

See main article: Mad honey.

Mad honey intoxication is a result of eating honey containing grayanotoxins.[127] Honey produced from flowers of rhododendrons, mountain laurels, sheep laurel, and azaleas may cause honey intoxication. Symptoms include dizziness, weakness, excessive perspiration, nausea, and vomiting. Less commonly, low blood pressure, shock, heart rhythm irregularities, and convulsions may occur, with rare cases resulting in death. According to the FDA, honey intoxication is more likely when using "natural" unprocessed honey from farmers who may have a small number of hives because commercial processing, which pools of honey from numerous sources, dilutes the toxins.[128]

Toxic honey may also result when bees are proximate to tutu bushes (Coriaria arborea) and the vine hopper insect (Scolypopa australis). Both are found throughout New Zealand. Bees gather honeydew produced by the vine hopper insects feeding on the tutu plant. This introduces the poison tutin into honey. Only a few areas in New Zealand (the Coromandel Peninsula, Eastern Bay of Plenty Region and the Marlborough Sounds) frequently produce toxic honey. Symptoms of tutin poisoning include vomiting, delirium, giddiness, increased excitability, stupor, coma, and violent convulsions.[129] To reduce the risk of tutin poisoning, humans should not eat honey taken from feral hives in the risk areas of New Zealand. Since December 2001, New Zealand beekeepers have been required to reduce the risk of producing toxic honey by closely monitoring tutu, vine hopper, and foraging conditions within 3abbr=onNaNabbr=on of their apiary. Intoxication is rarely dangerous.

Folk medicine

In myths and folk medicine, honey was used both orally and topically to treat various ailments including gastric disturbances, ulcers, skin wounds, and skin burns by ancient Greeks and Egyptians, and in Ayurveda and traditional Chinese medicine.

History

Honey collection is an ancient activity, long preceding the honey bee's domestication; this traditional practice is known as honey hunting. A Mesolithic rock painting in a cave in Valencia, Spain, dating back at least 8,000 years, depicts two honey foragers collecting honey and honeycomb from a wild bees' nest. The figures are depicted carrying baskets or gourds, and using a ladder or series of ropes to reach the nest.[130] Humans followed the greater honeyguide bird to wild beehives;[131] this behavior may have evolved with early hominids.[132] [133] The oldest known honey remains were found in Georgia during the construction of the Baku–Tbilisi–Ceyhan pipeline: archaeologists found honey remains on the inner surface of clay vessels unearthed in an ancient tomb, dating back between 4,700 and 5,500 years.[134] [135] [136] In ancient Georgia, several types of honey were buried with a person for journeys into the afterlife, including linden, berry, and meadow-flower varieties.[137]

The first written records of beekeeping are from ancient Egypt, where honey was used to sweeten cakes, biscuits, and other foods and as a base for unguents in Egyptian hieroglyphs. The dead were often buried in or with honey in Egypt, Mesopotamia and other regions. Bees were kept at temples to produce honey for temple offerings, mummification and other uses.[138]

In ancient Greece, honey was produced from the Archaic to the Hellenistic periods. In 594 BCE,[139] beekeeping around Athens was so widespread that Solon passed a law about it: "He who sets up hives of bees must put them 300feet away from those already installed by another".[140] Greek archaeological excavations of pottery located ancient hives.[141] According to Columella, Greek beekeepers of the Hellenistic period did not hesitate to move their hives over rather long distances to maximize production, taking advantage of the different vegetative cycles in different regions. The spiritual and supposed therapeutic use of honey in ancient India was documented in both the Vedas and the Ayurveda texts.[142]

Religious significance

In ancient Greek religion, the food of Zeus and the twelve Gods of Olympus was honey in the form of nectar and ambrosia.[143]

In the Hebrew Bible, the Promised Land (Canaan, the Land of Israel) is described 16 times as "the land of milk and honey"[144] as a metaphor for its bounty. Of the 55 times the word "honey" appears in the Hebrew Bible, 16 are part of the expression "the land of milk and honey", and only twice is "honey" explicitly associated with bees, both being related to wild bees. Modern biblical researchers long considered that the original Hebrew word used in the Bible, (דבש, devash), refers to the sweet syrup produced from figs or dates, because the domestication of the honey bee was completely undocumented through archaeology anywhere in the ancient Near East (excluding Egypt) at the time associated with the earlier biblical narratives (books of Exodus, Judges, Kings, etc.). In 2005, however, an apiary dating from the 10th century BC was found in Tel Rehov, Israel that contained 100 hives, estimated to produce half a ton of honey annually.[145] This was, as of 2007, the only such finding made by archaeologists in the entire ancient Near East region, and it opens the possibility that biblical honey was indeed bee honey.

In Jewish tradition, honey is a symbol for the new year, Rosh Hashanah. At the traditional meal for that holiday, apple slices are dipped in honey and eaten to bring a sweet new year. Some Rosh Hashanah greetings show honey and an apple, symbolizing the feast. In some congregations, small straws of honey are given out to usher in the new year.[146] Pure honey is considered kosher (permitted to be eaten by religious Jews), though it is produced by a flying insect, a non-kosher creature; eating other products of non-kosher animals is forbidden.[147] It belongs among the parve (neutral) foods, containing neither meat nor dairy products and allowed to be eaten together with either.

Early Christians used honey as a symbol of spiritual perfection in christening ceremonies.

In Islam, an entire chapter (Surah) in the Quran is called an-Nahl (the Bees). According to his teachings (hadith), Muhammad strongly recommended honey for healing purposes.The Quran promotes honey as a nutritious and healthy food, saying:

In Hinduism, honey (Madhu) is one of the five elixirs of life (Panchamrita). In temples, honey is poured over the deities in a ritual called Madhu abhisheka. The Vedas and other ancient literature mention the use of honey as a great medicinal and health food.[148]

In Buddhism, honey plays an important role in the festival of Madhu Purnima, celebrated in India and Bangladesh. The day commemorates Buddha's making peace among his disciples by retreating into the wilderness. According to legend, while he was there a monkey brought him honey to eat. On Madhu Purnima, Buddhists remember this act by giving honey to monks. The monkey's gift is frequently depicted in Buddhist art.

Popular culture

Honey is especially associated with Winnie-the-Pooh, and Bamse's thunder honey.[149] [150]

See also

Bibliography

External links

Notes and References

  1. Crane . Eva . Eva Crane . Honey from honeybees and other insects . Ethology Ecology & Evolution . 3 . sup1 . 100–105 . 1990 . 10.1080/03949370.1991.10721919 . 0394-9370 .
  2. Book: Grüter, Christoph . Stingless Bees: Their Behaviour, Ecology and Evolution . Springer New York . 2020 . 978-3-030-60089-1 . 10.1007/978-3-030-60090-7 . Fascinating Life Sciences . 227250633 . limited . 27 May 2021 . 20 April 2023 . https://web.archive.org/web/20230420072205/https://link.springer.com/book/10.1007/978-3-030-60090-7#toc . live .
  3. Book: Crane . Ethel Eva . The World History of Beekeeping and Honey Hunting . 1999 . Routledge . 978-1-136-74670-3.
  4. National Honey Board. "Carbohydrates and the Sweetness of Honey" . Last accessed 1 June 2012.
  5. Oregon State University "What is the relative sweetness of different sugars and sugar substitutes?". Retrieved 1 June 2012.
  6. News: The Science Behind Honey's Eternal Shelf Life . Geiling . Natasha . 22 August 2013 . . 9 September 2019 . 10 June 2023 . https://web.archive.org/web/20230610150040/https://www.smithsonianmag.com/science-nature/the-science-behind-honeys-eternal-shelf-life-1218690/?no-ist . live .
  7. Book: Prescott, Lansing . Harley, John P. . Klein, Donald A. . Microbiology . WCB/McGraw-Hill . registration . Boston . 1999 . 978-0-697-35439-6.
  8. Book: Quezada-Euán, José Javier G. . Springer New York . 2018 . 978-3-030-08539-1 . 10.1007/978-3-319-77785-6 . Stingless Bees of Mexico . 51912114 . limited . 27 May 2021 . 13 July 2024 . https://web.archive.org/web/20240713173055/https://link.springer.com/book/10.1007/978-3-319-77785-6#about . live .
  9. Suarez . R. K. . Lighton . J. R. . Joos . B. . Roberts . S. P. . Harrison . J. F. . Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees. . Proceedings of the National Academy of Sciences . 93 . 22 . 29 October 1996 . 0027-8424 . 10.1073/pnas.93.22.12616 . 12616–12620 . 8901631 . free . 38041 . 1996PNAS...9312616S.
  10. News: Binkley . D. . 31 August 2014 . How bees make honey is complex process . y . . 2 April 2022 . 14 October 2023 . https://web.archive.org/web/20231014203304/http://www.dispatch.com/story/news/technology/2014/08/31/how-bees-make-honey-is/23975471007/ . live .
  11. Web site: Honey and Bees . 17 November 2015 . dead . https://web.archive.org/web/20100305094736/http://www.honey.com/honey-at-home/learn-about-honey/how-honey-is-made . 5 March 2010. National Honey Board
  12. Web site: Did you know there's water in honey? . 24 September 2022 . South Mountain Bees . 13 July 2024 . https://web.archive.org/web/20240713173049/https://southmountainbees.com/blogs/on-bees-and-honey/how-much-water-is-there-in-honey . live .
  13. Beekeeping: Everything You Need to Know to Start Your First Beehive by Joachim Petterson – Weldonowen 2015 Page 57
  14. Lamb . K. P. . 1 February 1959 . Composition of the honeydew of the aphid Brevicoryne brassicae (L.) feeding on swedes (Brassica napobrassica DC.) . Journal of Insect Physiology . en . 3 . 1 . 1–13 . 10.1016/0022-1910(59)90054-X . 1959JInsP...3....1L . 0022-1910.
  15. Rossano . Rocco . Larocca . Marilena . Polito . Teresa . Perna . Anna Maria . Padula . Maria Carmela . Martelli . Giuseppe . Riccio . Paolo . What Are the Proteolytic Enzymes of Honey and What They Do Tell Us? A Fingerprint Analysis by 2-D Zymography of Unifloral Honeys . PLOS ONE . 7 . 11 . 7 November 2012 . 1932-6203 . 10.1371/journal.pone.0049164 . e49164 . free . 23145107 . 3492327 . 2012PLoSO...749164R.
  16. Web site: Standifer . L. N. . Fact sheets . 13 July 2023 . Mid-Atlantic Apiculture Research and Extension Consortium . 2020 . 4 October 1999 . https://web.archive.org/web/19991004222025/http://maarec.cas.psu.edu/bkCD/HBBiology/nutrition_supplements.htm . live .
  17. Bequaert . J.Q. . 1932 . The Nearctic social wasps of the subfamily polybiinae (Hymenoptera; Vespidae) . Entomologica Americana.
  18. Britto . Fábio Barros . Caetano . Flávio Henrique . 2006 . Morphological Features and Occurrence of Degenerative Characteristics in the Hypopharyngeal Glands of the Paper Wasp Polistes versicolor (Olivier) (Hymenoptera: Vespidae) . Micron . 37 . 8 . 742–47 . 10.1016/j.micron.2006.03.002 . 16632372.
  19. Book: Seeley, Thomas D. . The lives of bees : the untold story of the honey bee in the wild . 2019 . 978-0-691-16676-6 . Princeton, NJ . 1059264208.
  20. Web site: Civitts . Ray . 15 April 2019 . When do you add a honey super? . 24 September 2022 . Mountain Sweet Honey . en-US . 24 September 2022 . https://web.archive.org/web/20220924032503/https://mountainsweethoney.com/add-honey-super/ . live .
  21. Web site: How honey is made . National Honey Board (NHB) . 2018 . 29 June 2018 . 11 June 2017 . https://web.archive.org/web/20170611170408/https://www.honey.com/about-honey/how-honey-is-made . live .
  22. Book: Hopf, Alice L. . Animals that eat nectar and honey . Alice Lightner Hopf . 1979 . Holiday House . 978-0-8234-0338-7 . 28 May 2016 . 13 July 2024 . https://web.archive.org/web/20240713173051/https://books.google.com/books?id=STYkAAAAMAAJ . live .
  23. H. A. . Hagen . The History of the Origin and Development of Museums . The American Naturalist/Volume 10/Number 2/The History of the Origin and Development of Museums . 2448028 . . 10 . 2 . 82–83 . 1876 . Packard . Alpheus Spring . Page:The American naturalist. (IA mobot31753002156567).pdf/88.
  24. 1894. The Mummy: A Handbook of Egyptian Funerary Archaeology. 2nd ed. Cambridge: Cambridge University Press. (Reprinted New York: Dover Publications, 1989)
  25. https://gwern.net/doc/history/1975-leek.pdf#page=3 "Some Evidence of Bees and Honey in Ancient Egypt"
  26. The Hive: The Story of the Honeybee and Us By Bee Wilson --St. Martins Press 2004 Page 167
  27. Book: 10.1007/978-1-4613-1119-5_8 . Food Authentication . 259–303 . 1996 . Molan . P. C. . 978-1-4612-8426-0 . Authenticity of honey.
  28. Web site: FAQS on honey testing methods for detecting adulteration with sugar syrups . National Honey Board . 2023 . 13 July 2023 . 11 July 2024 . https://web.archive.org/web/20240711234128/https://honey.com/images/files/NHB-Honey-Testing-FAQs.pdf . live .
  29. Web site: Production quantity of honey (natural) in 2020, Livestock Primary/World Regions/Production Quantity from picklists . Food and Agriculture Organization of the United Nations . 2020 . 17 May 2022 . 31 August 2020 . https://web.archive.org/web/20200831082444/http://www.fao.org/faostat/en/#data/QL . live .
  30. Marlowe . Frank W. . Berbesque . J. Colette . Wood . Brian . Crittenden . Alyssa . Porter . Claire . Mabulla . Audax . Honey, Hadza, hunter-gatherers, and human evolution . Journal of Human Evolution . 1 June 2014 . 71 . 119–128 . 10.1016/j.jhevol.2014.03.006 . 24746602. 2014JHumE..71..119M .
  31. Spottiswoode . Claire N. . Begg . Keith S. . Begg . Colleen M. . 22 July 2016 . Reciprocal signaling in honeyguide-human mutualism . . 353 . 6297 . 387–389 . 10.1126/science.aaf4885 . 0036-8075 . 27463674 . . 2016Sci...353..387S . 206648494 . 30 June 2022 . 22 June 2022 . https://web.archive.org/web/20220622123816/https://www.science.org/doi/10.1126/science.aaf4885 . live .
  32. McGovern . Patrick E. . Zhang . Juzhong . Tang . Jigen . Zhang . Zhiqing . Hall . Gretchen R. . Moreau . Robert A. . Nuñez . Alberto . Butrym . Eric D. . Richards . Michael P. . Wang . Chen-shan . Cheng . Guangsheng . Zhao . Zhijun . Wang . Changsui . 3 . Fermented beverages of pre- and proto-historic China . Proceedings of the National Academy of Sciences . 21 December 2004 . 101 . 51 . 17593–17598 . 10.1073/pnas.0407921102 . 15590771 . 539767 . 2004PNAS..10117593M . free.
  33. Pereira . Ana Paula . Mendes-Ferreira . Ana . Estevinho . Leticia M. . Mendes-Faia . Arlete . Improvement of mead fermentation by honey-must supplementation . Journal of the Institute of Brewing . 2015 . 121 . 3 . 405–410 . 10.1002/jib.239 . 10198/16120 . free.
  34. 25153872 . 6271869 . 2014 . Iglesias . A. . Developments in the fermentation process and quality improvement strategies for mead production . Molecules . 19 . 8 . 12577–12590 . Pascoal . A. . Choupina . A. B. . Carvalho . C. A. . Feás . X. . Estevinho . L. M. . 10.3390/molecules190812577 . free.
  35. Tierney . John . Making Mead in a Space-Age World . . 20 June 2017 . 21 October 2014 . 28 March 2017 . https://web.archive.org/web/20170328190429/https://www.theatlantic.com/business/archive/2014/10/making-mead-in-a-space-age-world/381433/ . live .
  36. Web site: Braggot: The Best of Mead and Beer . American Home Brewers Association . 19 June 2017 . 2017 . 20 February 2018 . https://web.archive.org/web/20180220092350/https://www.homebrewersassociation.org/how-to-brew/braggot-the-best-of-mead-and-beer/ . live .
  37. Book: Tomasik, Piotr . Chemical and Functional Properties of Food Saccharides . 20 October 2003 . CRC Press . 978-0-203-49572-8 . 74–.
  38. [#Root|Root]
  39. Tomasik, Piotr (2004) Chemical and functional properties of food saccharides, CRC Press, p. 74,
  40. Kántor . Zoltán . Pitsi . Guido . Thoen . Jan . Glass Transition Temperature of Honey as a Function of Water Content As Determined by Differential Scanning Calorimetry . Journal of Agricultural and Food Chemistry . American Chemical Society (ACS) . 47 . 6 . 6 May 1999 . 0021-8561 . 10.1021/jf981070g . 2327–2330 . 10794630.
  41. Russell . E. V. . Israeloff . N. E. . Direct observation of molecular cooperativity near the glass transition . Nature . 408 . 6813 . 695–698 . 2000 . 11130066 . 10.1038/35047037 . cond-mat/0012245 . 2000Natur.408..695V . 4365023.
  42. Book: Value-added products from beekeeping . 1996 . Food and Agriculture Organization of the United Nations . 978-92-5-103819-2 . 7–8. 5 January 2016.
  43. Web site: Bogdanov . Stefan . 2009 . Physical Properties of Honey . https://web.archive.org/web/20090920094501/http://www.bee-hexagon.net/files/file/fileE/Honey/4PhysicalPropertiesHoney.pdf . 20 September 2009.
  44. Wetting of Real Surfaces by Edward Yu. Bormashenko – Walter D Gruyter 2013 Page 4
  45. Food Engineering Interfaces by José Miguel Aguilera, Ricardo Simpson, Jorge Welti-Chanes, Daniela Bermudez Aguirre, Gustavo Barbosa-Canovas – Springer 2011 Pages 479–487
  46. [#Krell|Krell]
  47. [#Root|Root]
  48. News: Bees 'producing M&M's coloured honey' . https://ghostarchive.org/archive/20220111/https://www.telegraph.co.uk/news/newstopics/howaboutthat/9587260/Bees-producing-MandMs-coloured-honey.html . 11 January 2022 . subscription . live . 4 October 2012 . . 30 December 2014.
  49. Web site: Rusty . 17 September 2012 . Kudzu: the dark secret of purple honey? . 30 May 2021 . Honey Bee Suite . 2 June 2021 . https://web.archive.org/web/20210602213638/https://www.honeybeesuite.com/purple-honey/ . live .
  50. Hans-Dieter Belitz, Werner Grosch, Peter Schieberle Food chemistry Springer Verlag, Berlin-Heidelberg 2004 p. 884
  51. Zdzisław E. Sikorski Chemical and functional properties of food components CRC Press 2007 p. 121
  52. [#Root|Root]
  53. Web site: Solids, Liquids and Gases – Thermal Conductivities . www.engineeringtoolbox.com . 11 April 2018 . 23 July 2018 . https://web.archive.org/web/20180723215428/https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html . live .
  54. [#Krell|Krell]
  55. Web site: pH and acids in honey . National Honey Board Food Technology/Product Research Program . April 2006 . 1 March 2012 . https://web.archive.org/web/20110701123559/http://www.honey.com/images/downloads/ph-acidsinhoney.pdf . 1 July 2011 . dead.
  56. 10.1021/jf00060a006 . Wilkins, Alistair L. . Lu, Yinrong . J. Agric. Food Chem. . 1995 . 43 . 12 . 3021–3025 . Extractives from New Zealand Honeys. 5. Aliphatic Dicarboxylic Acids in New Zealand Rewarewa (Knightea excelsa) Honey.
  57. Pattamayutanon . Praetinee . Angeli . Sergio . Thakeow . Prodpran . Abraham . John . Disayathanoowat . Terd . Chantawannakul . Panuwan . Rueppell . Olav . Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species . PLOS ONE . 12 . 2 . 13 February 2017 . 1932-6203 . 10.1371/journal.pone.0172099 . e0172099 . 28192487 . 5305196 . 2017PLoSO..1272099P . free.
  58. Patrignani . Mariela . Fagúndez . Guillermina Andrea . Tananaki . Chrysoula . Thrasyvoulou . Andreas . Lupano . Cecilia Elena . Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin . Food Chemistry . 246 . 2018 . 0308-8146 . 10.1016/j.foodchem.2017.11.010 . 32–40 . 29291855. 11336/63467 . free .
  59. Book: Bee Products: Chemical and Biological Properties (volatiles, page 61--67, 114) . José M Alvarez-Suarez . Springer International . 2017 . 978-3-319-59689-1 . 19 September 2020 . 13 July 2024 . https://web.archive.org/web/20240713173052/https://books.google.com/books?id=hlU0DwAAQBAJ&pg=PA114#v=onepage&q&f=false . live .
  60. http://www.fao.org/docrep/w0076E/w0076e04.htm Value-added products from beekeeping. Chapter 2
  61. Web site: The Rheological & Mellisopalynological Properties of Honey . Minerva Scientific. 10 December 2012 . If however, rheological measurements are made on a given sample it can be deduced that the sample is predominantly Manuka (Graph 2) or Kanuka (Graph 3) or a mixture of the two plant species. 10 May 2013. https://web.archive.org/web/20130510105340/http://www.minervascientific.co.uk/bulletins/Rheological_Properties_of_Honey.pdf. dead.
  62. Web site: Honey Varietals . National Honey Board . 2018 . 25 June 2018 . The color, flavor and even aroma of honey differs, depending on the nectar of flowers visited by the bees that made it. There are more than 300 unique types of honey available in the United States alone, each originating from a different floral source. . 25 June 2018 . https://web.archive.org/web/20180625190154/https://www.honey.com/about-honey/honey-varietals . live .
  63. Web site: Honey Color and Flavor . National Honey Board. 3 February 2011 . Wildflower honey is often used to describe honey from miscellaneous and undefined flower sources.. 17 October 2013. https://web.archive.org/web/20131017072336/http://www.honey.com/newsroom/press-kits/honey-color-and-flavor. dead.
  64. Web site: Varieties of honey: Polyfloral honey . The Honey Book. 10 November 2007 . Honey that is from wild or commercialized honeybees that is derived from many types of flowers is a resulting polyfloral honey.. 9 March 2008. https://web.archive.org/web/20080309203727/http://www.honeybook.net/polyfloral_honey.shtml. dead.
  65. Pita-Calvo . Consuelo . Vázquez . Manuel . Differences between honeydew and blossom honeys: A review . Trends in Food Science & Technology . January 2017 . 59 . 79–87 . 10.1016/j.tifs.2016.11.015.
  66. Seraglio . Siluana Katia Tischer . Silva . Bibiana . Bergamo . Greici . Brugnerotto . Patricia . Gonzaga . Luciano Valdemiro . Fett . Roseane . Costa . Ana Carolina Oliveira . An overview of physicochemical characteristics and health-promoting properties of honeydew honey . Food Research International . May 2019 . 119 . 44–66 . 10.1016/j.foodres.2019.01.028. free . 30884675 .
  67. News: A Short Story About A Wintering Colony With Dysentery Bee Culture. 19 April 2015. Bee Culture. 9 October 2018.
  68. Gounari . Sofia . Studies on the phenology of Marchalina hellenica (gen.) (Hemiptera: coccoidea, margarodidae) in relation to honeydew flow . Journal of Apicultural Research . 45 . 1 . 8–12 . 2006 . 10.3896/IBRA.1.45.1.03.
  69. Book: Flottum, Kim . The Backyard Beekeeper: An Absolute Beginner's Guide to Keeping Bees in Your Yard and Garden . 2010 . Quarry Books . 978-1-61673-860-0 . 170–. 5 January 2016.
  70. Web site: Sertich Velie . Marissa . August 10, 2018 . live . https://web.archive.org/web/20240527130509/https://www.seriouseats.com/the-serious-eats-guide-to-sugar-syrup-honey-natural-sweetners . 27 May 2024 . 24 June 2024 . Serious Eats.
  71. Pearson . Gwen . 7 March 2014 . What Do You Do With Crystallized Honey? . 24 June 2024 . . 14 June 2023 . https://web.archive.org/web/20230614101914/https://www.wired.com/2014/03/crystalized-honey/ . live .
  72. Subramanian . R. . Hebbar . H. Umesh . Rastogi . N. K. . Processing of Honey: A Review . International Journal of Food Properties . 10 . 127–143 . 2007 . 10.1080/10942910600981708 . 98158536. free.
  73. Web site: Definition of Honey and Honey Products . National Honey Board . 15 June 1996 . https://web.archive.org/web/20071203010606/http://www.honey.com/downloads/honeydefs.pdf . 3 December 2007.
  74. Book: Chaven, Suchart . Food Safety Management: Chapter 11. Honey, Confectionery and Bakery Products . 1 November 2013 . Elsevier Inc. Chapters . 978-0-12-805650-9.
  75. Web site: United States Standards for Grades of Extracted Honey . U.S. Agricultural Marketing Service (AMS). 20 January 2012. 15 March 2014. https://web.archive.org/web/20140315015648/http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELDEV3011895. dead.
  76. Book: Damerow, Gail . Gail Damerow . The Backyard Homestead Guide to Raising Farm Animals: Choose the Best Breeds for Small-Space Farming, Produce Your Own Grass-Fed Meat, Gather Fresh Eggs, Collect Fresh Milk, Make Your Own Cheese, Keep Chickens, Turkeys, Ducks, Rabbits, Goats, Sheep, Pigs, Cattle, & Bees . 2011 . Storey Publishing, LLC . 978-1-60342-697-8 . 167–. 5 January 2016.
  77. Book: First Regional Training Workshop for Beekeepers . Bib. Orton IICA / CATIE . 55– . 1992. 5 January 2016.
  78. Web site: Extracted Honey Grading Manual . U.S. Agricultural Marketing Service (AMS) . 17 May 2019 . 1 August 2020 . https://web.archive.org/web/20200801170649/https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Inspection_Instructions%5B1%5D.pdf . live .
  79. https://www.hielscher.com/ultrasonics/honey_01.htm Ultrasonic Honey Processing
  80. Book: Sharma, Rajeev . Improve your Health! with Honey . 2005 . Diamond Pocket Books . 978-81-288-0920-0 . 33–. 5 January 2016.
  81. Book: Krell, Rainer . Value-added Products Froom Beekeeping . 1996 . Food & Agriculture Org. . 978-92-5-103819-2 . 25–. 5 January 2016.
  82. Book: Thacker, Emily . The Honey Book . 22 April 2012 . James Direct, Inc. . 978-1-62397-061-1.
  83. http://www.beeworks.com/informationcentre/honey_processing.html Honey Processing
  84. http://www.food.gov.uk/sites/default/files/multimedia/pdfs/honeyguidance.pdf Honey Regulations 2003
  85. Web site: United States Standards for Grades of Extracted Honey . U.S. Agricultural Marketing Service (AMS) . 8 April 2016 . 19 April 2016 . https://web.archive.org/web/20160419031259/https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Standard%5B1%5D.pdf . live .
  86. http://agmarknet.nic.in/honeygmr.pdf NOTIFICATION
  87. Web site: Bogdanov, Stefan . 2008 . Honey production . Bee Product Science . https://web.archive.org/web/20090305184128/http://www.bee-hexagon.net/files/file/fileE/Honey/Honey%20ProductionCorr.pdf . 5 March 2009.
  88. Allan, Matthew . Basic Honey Processing . Beekeeping in a Nutshell . 5 . https://web.archive.org/web/20010217104623/http://www.beedata.com/data2/basic_honey_processing.htm . 17 February 2001.
  89. 10.1021/cen-v086n035.p043 . . 2008 . 86 . Keeping Tabs on Honey . 43–44 . 35.
  90. Web site: Full Report (All Nutrients): 19296, Honey . USDA National Nutrient Database, Agricultural Research Service, Release 28 . 2015. 30 October 2015. 12 March 2016. https://web.archive.org/web/20160312070344/https://ndb.nal.usda.gov/ndb/foods/show/6287?fg=&man=&lfacet=&count=&max=35&sort=&qlookup=honey&offset=&format=Full&new=&measureby=. dead.
  91. Arcot, Jayashree and Brand-Miller, Jennie (March 2005) A Preliminary Assessment of the Glycemic Index of Honey . A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 05/027. rirdc.infoservices.com.au
  92. Book: Honey and Its Uses in the Home . US Department of Agriculture, Farmers' Bulletin, No. 653 . Hunt CL, Atwater HW . 7 April 1915 . 2 April 2015 . 15 October 2023 . https://web.archive.org/web/20231015114113/https://babel.hathitrust.org/cgi/pt?id=wu.89094204153;view=1up;seq=3 . live .
  93. Web site: Beesource Beekeeping: Honey Composition and Properties . Beesource.com . October 1980. 6 February 2011. 24 December 2010. https://web.archive.org/web/20101224183023/http://www.beesource.com/resources/usda/honey-composition-and-properties/. dead.
  94. Ohmenhaeuser . Marc . Monakhova . Yulia B. . Kuballa . Thomas . Lachenmeier . Dirk W. . Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics . ISRN Analytical Chemistry . 2013 . 2013 . 1–9 . 10.1155/2013/825318 . free . 6 September 2019 . 1 August 2020 . https://web.archive.org/web/20200801154657/https://zenodo.org/record/438103 . live .
  95. Honey as a topical treatment for wounds . Jull . Andrew B. . Cullum . Nicky . Dumville . Jo C. . Westby . Maggie J. . Deshpande . Sohan . Walker . Natalie . 2015 . Cochrane Database of Systematic Reviews . 2015 . 3 . CD005083 . 25742878 . 10.1002/14651858.cd005083.pub4 . 9719456 . Honey appears to heal partial thickness burns more quickly than conventional treatment (which included polyurethane film, paraffin gauze, soframycin-impregnated gauze, sterile linen and leaving the burns exposed) and infected post-operative wounds more quickly than antiseptics and gauze. .
  96. Majtan . J. . Honey: an immunomodulator in wound healing . Wound Repair and Regeneration . 2014 . 22 . 2 Mar–Apr . 187–192 . 10.1111/wrr.12117 . 24612472 . 40188613.
  97. O'Meara . Susan . Al-Kurdi . Deyaa . Ologun . Yemisi . Ovington . Liza G. . Martyn-St James . Marrissa . Richardson . Rachel . Antibiotics and antiseptics for venous leg ulcers . Cochrane Database of Systematic Reviews . Wiley . 2014 . 1 . 10 January 2014 . CD003557 . 1465-1858 . 10.1002/14651858.cd003557.pub5 . 24408354 . 10580125.
  98. Eekhof . Just A.H. . Van Wijk . Bart . Knuistingh Neven . Arie . van der Wouden . Johannes C. . Interventions for ingrowing toenails . Cochrane Database of Systematic Reviews . Wiley . 18 April 2012 . 4 . CD001541 . 1465-1858 . 10.1002/14651858.cd001541.pub3 . 22513901 . 1887/117180 . 44706332 . free.
  99. Saikaly . Sami K. . Khachemoune . Amor . Honey and Wound Healing: An Update . American Journal of Clinical Dermatology . 6 January 2017 . 18 . 2 . 237–251 . 10.1007/s40257-016-0247-8 . 28063093 . 207482579.
  100. Book: Buhner . Stephen Harrod . Herbal Antibiotics: Natural Alternatives for Treating Drug-Resistant Bacteria . 2012 . Storey Publishing . 978-1-60342-987-0 . 188–196 . 2nd.
  101. Book: Boukraâ . Laïd . Honey in Traditional and Modern Medicine . 2014 . CRC Press . 978-1-4398-4016-0 . 126.
  102. Dustmann . J. H. . Antibacterial Effect of Honey . Apiacta . 1979 . 14 . 1 . 7–11 . 1221-7816.
  103. Nolan . Victoria C. . Harrison . James . Cox . Jonathan A. G. . Dissecting the Antimicrobial Composition of Honey . Antibiotics . 5 December 2019 . 8 . 4 . 251 . 10.3390/antibiotics8040251 . 31817375 . 6963415. free.
  104. Molan . P. . Rhodes . T. . Honey: A Biologic Wound Dressing. . Wounds . June 2015 . 27 . 6 . 141–51 . 26061489.
  105. Maddocks . Sarah E . Jenkins . Rowena E . Honey: a sweet solution to the growing problem of antimicrobial resistance? . Future Microbiology . 2013 . 8 . 11 . 1419–1429 . 10.2217/fmb.13.105 . 24199801.
  106. Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: Possible therapeutic implications . Fitoterapia . 1 June 2012 . 671–677 . 83 . 4 . 10.1016/j.fitote.2012.02.002 . Juraj . Majtan . Jaroslav . Klaudiny . Jana . Bohova . Lenka . Kohutova . Maria . Dzurova . Maria . Sediva . Maria . Bartosova . Viktor . Majtan . 22366273.
  107. 22095907 . 2012 . Kwakman . P. H. . Antibacterial components of honey . IUBMB Life . 64 . 1 . 48–55 . Zaat . S. A. . 10.1002/iub.578 . 19954920. free.
  108. Mulholland S, Chang AB . Honey and lozenges for children with non-specific cough . Cochrane Database Syst Rev . 2 . CD007523 . 2009 . 2009 . 19370690 . 10.1002/14651858.CD007523.pub2 . 7202236 . Systematic review .
  109. Oduwole . Olabisi . Udoh . Ekong E. . Oyo-Ita . Angela . Meremikwu . Martin M. . 2018 . Honey for acute cough in children . The Cochrane Database of Systematic Reviews . 4 . 12 . CD007094 . 10.1002/14651858.CD007094.pub5 . 1469-493X . 29633783 . 6513626.
  110. Goldman . Ran D. . Honey for treatment of cough in children . Canadian Family Physician . December 2014 . 60 . 12 . 1107–1110 . 25642485 . 4264806 . Systematic review . 15 October 2015 . 19 January 2016 . https://web.archive.org/web/20160119001454/http://www.cfp.ca/content/60/12/1107.long . live .
  111. Paul . Ian M. . Therapeutic Options for Acute Cough Due to Upper Respiratory Infections in Children . Lung . February 2012 . 190 . 1 . 41–44 . 10.1007/s00408-011-9319-y . 21892785 . 23865647.
  112. Web site: . Cough . 18 June 2014 . 20 June 2013 . 9 June 2014 . https://web.archive.org/web/20140609162422/http://www.nhs.uk/conditions/Cough/Pages/Introduction.aspx . live .
  113. Web site: Cough and cold remedies for the treatment of acute respiratory infections in young children . https://web.archive.org/web/20130825012135/http://www.who.int/maternal_child_adolescent/documents/fch_cah_01_02/en/ . dead . 25 August 2013 . World Health Organization (WHO) . 2001 . WHO/FCH/CAH/01.02 . 10665/66856 . Organization . World Health.
  114. Web site: Button Battery Ingestion: Triage and Treatment Guideline . National Capital Poison Center, Washington, DC . June 2018 . 5 July 2018 . 23 March 2021 . https://web.archive.org/web/20210323062616/https://www.poison.org/battery/guideline . live .
  115. Mubarak . Amani . Benninga . Marc A. . Broekaert . Ilse . Dolinsek . Jernej . Homan . Matjaž . Mas . Emmanuel . Miele . Erasmo . Pienar . Corina . Thapar . Nikhil . Thomson . Mike . Tzivinikos . Christos . de Ridder . Lissy . Diagnosis, Management, and Prevention of Button Battery Ingestion in Childhood: A European Society for Paediatric Gastroenterology Hepatology and Nutrition Position Paper . Journal of Pediatric Gastroenterology & Nutrition . Ovid Technologies (Wolters Kluwer Health) . 73 . 1 . 14 January 2021 . 0277-2116 . 10.1097/mpg.0000000000003048 . 129–136. free . 33555169.
  116. Sethia . Rishabh . Gibbs . Hannah . Jacobs . Ian N. . Reilly . James S. . Rhoades . Keith . Jatana . Kris R. . Current management of button battery injuries . Laryngoscope Investigative Otolaryngology . Wiley . 6 . 3 . 15 April 2021 . 2378-8038 . 10.1002/lio2.535 . 549–563. free . 34195377 . 8223456.
  117. Web site: . Honey . 24 September 2015 . 1 November 2013 . 25 September 2015 . https://web.archive.org/web/20150925132729/http://www.mayoclinic.org/drugs-supplements/honey/evidence/hrb-20059618 . live .
  118. Bardy . Joy . Slevin . Nicholas J . Mais . Kathleen L . Molassiotis . Alexander . A systematic review of honey uses and its potential value within oncology care . Journal of Clinical Nursing . Wiley . 17 . 19 . 17 September 2008 . 0962-1067 . 10.1111/j.1365-2702.2008.02304.x . 2604–2623 . 18808626.
  119. Rudmik . Luke . Hoy . Monica . Schlosser . Rodney J. . Harvey . Richard J. . Welch . Kevin C. . Lund . Valerie . Smith . Timothy L. . Topical therapies in the management of chronic rhinosinusitis: an evidence-based review with recommendations . International Forum of Allergy & Rhinology . Wiley . 3 . 4 . 8 October 2012 . 2042-6976 . 10.1002/alr.21096 . 281–298. free . 23044832.
  120. Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, Beyene J, Chiavaroli L, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Kendall CW, Jenkins DJ . Effect of Fructose on Body Weight in Controlled Feeding Trials: A Systematic Review and Meta-analysis . Ann Intern Med . 2012 . 156 . 4 . 291–304 . 22351714 . 10.7326/0003-4819-156-4-201202210-00007 . 207536440.
  121. Web site: The health benefits of honey . Ottermann . Birgit . . Honey has a mild laxative effect which can help combat constipation and bloating. . 23 May 2013 . 1 May 2022 . 1 May 2022 . https://web.archive.org/web/20220501080918/https://www.news24.com/health24/natural/natural-living/The-health-benefits-of-honey-20130523 . live .
  122. Book: Prakash . V. . Martin-Belloso . Olga . Keener . Larry . Astley . Siân B. . Braun . Susanne . McMahon . Helena . Lelieveld . Huub . Regulating Safety of Traditional and Ethnic Foods . Academic Press . 25 November 2015 . 978-0-12-800620-7 . 223.
  123. Web site: Frequently Asked Questions . National Honey Board . 6 February 2011 . https://web.archive.org/web/20100201094727/http://www.honey.com/nhb/about-honey/frequently-asked-questions/category/honey-properties/ . 1 February 2010 . live.
  124. Web site: Report on Minimally Processed Infant Weaning Foods and the Risk of Infant Botulism . July 2006 . Advisory Committee on the Microbiological Safety of Food . 9 January 2012 . https://web.archive.org/web/20101019005426/http://www.food.gov.uk/multimedia/pdfs/infantbotulismreport.pdf . 19 October 2010.
  125. https://www.cdc.gov/botulism/pdf/bot-manual.pdf Botulism in the United States, 1899–1996
  126. Web site: Sanford . Malcolm T. . Atkinson . Eddie . Klopchin . Jeanette . Ellis . Jamie R. . Infant Botulism and Honey . Every Day Information Source . 4 April 2019 . 5 July 2020 . 17 October 2013 . https://web.archive.org/web/20131017082318/http://edis.ifas.ufl.edu/aa142 . live .
  127. Jansen . Suze A. . Kleerekooper . Iris . Hofman . Zonne L. M. . Kappen . Isabelle F. P. M. . Stary-Weinzinger . Anna . van der Heyden . Marcel A. G. . Grayanotoxin Poisoning: 'Mad Honey Disease' and Beyond . Cardiovascular Toxicology . 12 . 3 . 2012 . 208–215 . 10.1007/s12012-012-9162-2 . 22528814 . 3404272.
  128. Web site: "Grayanotoxin" . dead . https://web.archive.org/web/20130308010321/http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071128.htm . 8 March 2013 . 13 July 2009 . Food and Drug Administration. in the Foodborne Pathogenic Microorganisms and Natural Toxins Handbook, FDA Center for Food Safety and Applied Nutrition.
  129. Web site: Tutu toxicity: three case reports of Coriaria arborea ingestion, review of literature and recommendations for management – New Zealand Medical Journal . www.nzma.org.nz. 9 October 2018. 9 October 2018. https://web.archive.org/web/20181009211830/https://www.nzma.org.nz/journal/read-the-journal/all-issues/2010-2019/2013/vol-126-no-1370/cc-belcher. dead.
  130. Crane, Eva (1983) The Archaeology of Beekeeping, Cornell University Press,
  131. Isack HA, Reyer HU . Honeyguides and honey gatherers: interspecific communication in a symbiotic relationship . Science . 243 . 4896 . 1343–6 . 1989 . 17808267 . 10.1126/science.243.4896.1343 . 1989Sci...243.1343I . 4220280 . https://web.archive.org/web/20190307030337/http://pdfs.semanticscholar.org/d05b/5dc81c11741b9430c3ed49aed270e6bf83fe.pdf . dead . 7 March 2019.
  132. Short, Lester, Horne, Jennifer and Diamond, A. W. (2003). "Honeyguides". In Christopher Perrins (Ed.). Firefly Encyclopedia of Birds. Firefly Books. pp. 396–397. .
  133. 10.1080/00306525.1981.9633599 . A Review of African Birds Feeding in Association with Mammals . 1981 . Dean . W. R. J. . MacDonald . I. A. W. . Ostrich . 52 . 3 . 135–155 . 1981Ostri..52..135D.
  134. 10.1007/s00334-006-0067-5 . The first find in southern Georgia of fossil honey from the Bronze Age, based on palynological data . 2006 . Kvavadze . Eliso . Gambashidze . Irina . Mindiashvili . Giorgi . Gogochuri . Giorgi . Vegetation History and Archaeobotany . 16 . 5 . 399–404 . 128835308.
  135. http://www.cncworld.tv/news/v_show/23243_Georgian_ancient_honey.shtml Georgian ancient honey
  136. http://www.eurasianet.org/node/65204 Report: Georgia Unearths the World's Oldest Honey
  137. http://guildofscientifictroubadours.com/2012/04/02/the-worlds-first-winemakers-were-the-worlds-first-beekeepers/ The world's first winemakers were the world's first beekeepers.
  138. Book: Rachel Hajar . Honey and Medicine . Selin . Helaine . Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures . 2008 . Springer . 89.
  139. Book: Pliny . XI.9.19.
  140. Book: Plutarch . Life of Solon . 23.
  141. Book: Bresson . Alain . The Making of the Ancient Greek Economy: Institutions, Markets and Growth . Princeton University Press . 16 December 2015 . 978-1-4008-5245-1 . 3 November 2015 . 13 July 2024 . https://web.archive.org/web/20240713180655/https://books.google.com/books?id=wU9FCQAAQBAJ&q=honey+ancient+greek&pg=PA130#v=snippet&q=honey%20ancient%20greek&f=false . live .
  142. Pećanac M, Janjić Z, Komarcević A, Pajić M, Dobanovacki D, Misković SS . Burns treatment in ancient times . Med Pregl . 66 . 5–6 . 263–7 . 2013 . 23888738 . 10.1016/s0264-410x(02)00603-5.
  143. Book: Henrichs, Albert . Harvard Studies in Classical Philology . Harvard University Press . 1 April 1980 . 978-0-674-37930-5 . en .
  144. Web site: The Hebrew University of Jerusalem . First Beehives In Ancient Near East Discovered . ScienceDaily . 6 October 2015 . 13 July 2024 . https://web.archive.org/web/20240713180652/https://www.sciencedaily.com/releases/2007/09/070904114558.htm . live .
  145. Mazar . Amihai . Panitz-Cohen . Nava . It Is the Land of Honey: beekeeping at Tel Rehov . . 2007 . 70 . 4 . 202–219 . 10.1086/nea20361335 . 158044206 . https://web.archive.org/web/20200215174239/https://pdfs.semanticscholar.org/5c6d/b8daed1b1fd569827468b0b80ffb5d35a109.pdf . dead . 15 February 2020.
  146. Book: Napa Valley's Jewish Heritage . Michalski . Henry . Mendelsohn . Donna . Valley . Jewish Historical Society of Napa . 1 January 2012 . Arcadia Publishing . 978-0-7385-8898-8 . 12 November 2020 . 13 July 2024 . https://web.archive.org/web/20240713180656/https://books.google.com/books?id=CD8U0PXesiMC&q=straws&pg=PA121#v=snippet&q=straws&f=false . live .
  147. http://www.chabad.org/library/article_cdo/aid/712032/jewish/Why-Is-honey-kosher.htm "Why is honey kosher?"
  148. http://www.fjnet.com/english/society/t20061117_41041.htm A Meaningful Story of Buddha, Elephant and Monkey
  149. News: Winnie the Pooh Day 2023 . BBC . English . 18 January 2023 . 27 June 2023 . 27 June 2023 . https://web.archive.org/web/20230627122010/https://www.bbc.co.uk/newsround/46916003 . live .
  150. News: The world's 'strongest bear' celebrates 50th anniversary . Sveriges Radio . English . 19 January 2016 . 27 June 2023 . 28 June 2023 . https://web.archive.org/web/20230628025537/https://sverigesradio.se/artikel/6348955 . live .