A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability.
A free entropy is generated by a Legendre transformation of the entropy. The different potentials correspond to different constraints to which the system may be subjected.
See also: List of thermodynamic properties. The most common examples are:
Name | Function | Alt. function | Natural variables | |||||||||||||||
Entropy | S=
U+
V-
Ni | ~~~~~U,V,\{Ni\} | ||||||||||||||||
Massieu potential \ Helmholtz free entropy | \Phi=S-
U | =-
|
,V,\{Ni\} | |||||||||||||||
Planck potential \ Gibbs free entropy | \Xi=\Phi-
V | =-
|
,\{Ni\} |
where
S
\Phi
\Xi
U
T
P
V
A
G
Ni
\mui
s
i
i
Note that the use of the terms "Massieu" and "Planck" for explicit Massieu-Planck potentials are somewhat obscure and ambiguous. In particular "Planck potential" has alternative meanings. The most standard notation for an entropic potential is
\psi
\psi
S=S(U,V,\{Ni\})
By the definition of a total differential,
dS=
\partialS | |
\partialU |
dU+
\partialS | |
\partialV |
dV+
s | |
\sum | |
i=1 |
\partialS | |
\partialNi |
dNi.
From the equations of state,
dS=
1 | dU+ | |
T |
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi.
The differentials in the above equation are all of extensive variables, so they may be integrated to yield
S=
U | + | |
T |
PV | |
T |
+
s | |
\sum | |
i=1 |
\left(-
\muiN | |
T |
\right)+rm{constant}.
\Phi=S-
U | |
T |
\Phi=
U | + | |
T |
PV | |
T |
+
s | |
\sum | |
i=1 |
\left(-
\muiN | |
T |
\right)-
U | |
T |
\Phi=
PV | |
T |
+
s | |
\sum | |
i=1 |
\left(-
\muiN | |
T |
\right)
Starting over at the definition of
\Phi
d\Phi=dS-
1 | |
T |
dU-Ud
1 | |
T |
,
d\Phi=
1 | |
T |
dU+
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi-
1 | |
T |
dU-Ud
1 | |
T |
,
d\Phi=-Ud
1 | + | |
T |
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi.
The above differentials are not all of extensive variables, so the equation may not be directly integrated. From
d\Phi
\Phi=\Phi(
1 | |
T |
,V,\{Ni\}).
If reciprocal variables are not desired,[3]
d\Phi=dS-
TdU-UdT | |
T2 |
,
d\Phi=dS-
1 | |
T |
dU+
U | |
T2 |
dT,
d\Phi=
1 | |
T |
dU+
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi-
1 | |
T |
dU+
U | |
T2 |
dT,
d\Phi=
U | |
T2 |
dT+
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi,
\Phi=\Phi(T,V,\{Ni\}).
\Xi=\Phi-
PV | |
T |
\Xi=
PV | |
T |
+
s | |
\sum | |
i=1 |
\left(-
\muiN | |
T |
\right)-
PV | |
T |
\Xi=
s | |
\sum | |
i=1 |
\left(-
\muiN | |
T |
\right)
Starting over at the definition of
\Xi
d\Xi=d\Phi-
P | |
T |
dV-Vd
P | |
T |
d\Xi=-Ud
2 | |
T |
+
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi-
P | |
T |
dV-Vd
P | |
T |
d\Xi=-Ud
1 | |
T |
-Vd
P | |
T |
+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi.
The above differentials are not all of extensive variables, so the equation may not be directly integrated. From
d\Xi
\Xi=\Xi\left(
1 | |
T |
,
P | |
T |
,\{Ni\}\right).
If reciprocal variables are not desired,[3]
d\Xi=d\Phi-
T(PdV+VdP)-PVdT | |
T2 |
,
d\Xi=d\Phi-
P | |
T |
dV-
V | |
T |
dP+
PV | |
T2 |
dT,
d\Xi=
U | |
T2 |
dT+
P | |
T |
dV+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi-
P | |
T |
dV-
V | |
T |
dP+
PV | |
T2 |
dT,
d\Xi=
U+PV | |
T2 |
dT-
V | |
T |
dP+
s | |
\sum | |
i=1 |
\left(-
\mui | |
T |
\right)dNi,
\Xi=\Xi(T,P,\{Ni\}).