Factorial Explained

Selected factorials; values in scientific notation are rounded

n

n!

0 1
1 1
2 2
3 6
4 24
5 120
6 720
7
8
9
10
11
12
13
14
15
16
17
18
19
20
25
50
70
100
450
10

In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of

n

with the next smaller factorial:\beginn! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\\endFor example,5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product.[1]

Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book Sefer Yetzirah. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of

n

distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function and other functions, and they also have applications in algebra, number theory, probability theory, and computer science.

Much of the mathematics of the factorial function was developed beginning in the late 18th and early 19th centuries.Stirling's approximation provides an accurate approximation to the factorial of large numbers, showing that it grows more quickly than exponential growth. Legendre's formula describes the exponents of the prime numbers in a prime factorization of the factorials, and can be used to count the trailing zeros of the factorials. Daniel Bernoulli and Leonhard Euler interpolated the factorial function to a continuous function of complex numbers, except at the negative integers, the (offset) gamma function.

Many other notable functions and number sequences are closely related to the factorials, including the binomial coefficients, double factorials, falling factorials, primorials, and subfactorials. Implementations of the factorial function are commonly used as an example of different computer programming styles, and are included in scientific calculators and scientific computing software libraries. Although directly computing large factorials using the product formula or recurrence is not efficient, faster algorithms are known, matching to within a constant factor the time for fast multiplication algorithms for numbers with the same number of digits.

History

The concept of factorials has arisen independently in many cultures:

From the late 15th century onward, factorials became the subject of study by Western mathematicians. In a 1494 treatise, Italian mathematician Luca Pacioli calculated factorials up to 11!, in connection with a problem of dining table arrangements.[12] Christopher Clavius discussed factorials in a 1603 commentary on the work of Johannes de Sacrobosco, and in the 1640s, French polymath Marin Mersenne published large (but not entirely correct) tables of factorials, up to 64!, based on the work of Clavius. The power series for the exponential function, with the reciprocals of factorials for its coefficients, was first formulated in 1676 by Isaac Newton in a letter to Gottfried Wilhelm Leibniz.[13] Other important works of early European mathematics on factorials include extensive coverage in a 1685 treatise by John Wallis, a study of their approximate values for large values of

n

by Abraham de Moivre in 1721, a 1729 letter from James Stirling to de Moivre stating what became known as Stirling's approximation, and work at the same time by Daniel Bernoulli and Leonhard Euler formulating the continuous extension of the factorial function to the gamma function.[14] Adrien-Marie Legendre included Legendre's formula, describing the exponents in the factorization of factorials into prime powers, in an 1808 text on number theory.[15]

The notation

n!

for factorials was introduced by the French mathematician Christian Kramp in 1808. Many other notations have also been used. Another later notation

\vert\underline{n}

, in which the argument of the factorial was half-enclosed by the left and bottom sides of a box, was popular for some time in Britain and America but fell out of use, perhaps because it is difficult to typeset.[16] The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast,[17] in the first work on Faà di Bruno's formula,[18] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial.[19]

Definition

The factorial function of a positive integer

n

is defined by the product of all positive integers not greater than

n

[1] n! = 1 \cdot 2 \cdot 3 \cdots (n-2) \cdot (n-1) \cdot n.This may be written more concisely in product notation as[1] n! = \prod_^n i.

If this product formula is changed to keep all but the last term, it would define a product of the same form, for a smaller factorial. This leads to a recurrence relation, according to which each value of the factorial function can be obtained by multiplying the previous value n! = n\cdot (n-1)!.For example,

Factorial of zero

The factorial or in symbols, There are several motivations for this definition:

n!

as a product involves the product of no numbers at all, and so is an example of the broader convention that the empty product, a product of no factors, is equal to the multiplicative identity.[20]

n

elements from a set of

n

is \tbinom = \tfrac = 1, a binomial coefficient identity that would only be valid

0!=1

allows for the compact expression of many formulae, such as the exponential function, as a power series:

Applications

The earliest uses of the factorial function involve counting permutations: there are

In algebra, the factorials arise through the binomial theorem, which uses binomial coefficients to expand powers of sums. They also occur in the coefficients used to relate certain families of polynomials to each other, for instance in Newton's identities for symmetric polynomials.[26] Their use in counting permutations can also be restated algebraically: the factorials are the orders of finite symmetric groups.[27] In calculus, factorials occur in Faà di Bruno's formula for chaining higher derivatives.[18] In mathematical analysis, factorials frequently appear in the denominators of power series, most notably in the series for the exponential function,[13] e^x=1+\frac+\frac+\frac+\cdots=\sum_^\frac,and in the coefficients of other Taylor series (in particular those of the trigonometric and hyperbolic functions), where they cancel factors of

n!

coming from the This usage of factorials in power series connects back to analytic combinatorics through the exponential generating function, which for a combinatorial class with

ni

elements of is defined as the power series[28] \sum_^ \frac.

In number theory, the most salient property of factorials is the divisibility of

n!

by all positive integers up described more precisely for prime factors by Legendre's formula. It follows that arbitrarily large prime numbers can be found as the prime factors of the numbers

n!\pm1

, leading to a proof of Euclid's theorem that the number of primes is infinite.[29] When

n!\pm1

is itself prime it is called a factorial prime;[30] relatedly, Brocard's problem, also posed by Srinivasa Ramanujan, concerns the existence of square numbers of the form In contrast, the numbers

n!+2,n!+3,...n!+n

must all be composite, proving the existence of arbitrarily large prime gaps.[31] An elementary proof of Bertrand's postulate on the existence of a prime in any interval of the one of the first results of Paul Erdős, was based on the divisibility properties of factorials.[32] [33] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials.[34]

Factorials are used extensively in probability theory, for instance in the Poisson distribution[35] and in the probabilities of random permutations. In computer science, beyond appearing in the analysis of brute-force searches over permutations,[36] factorials arise in the lower bound of

log2n!=nlog2n-O(n)

on the number of comparisons needed to comparison sort a set of

n

items, and in the analysis of chained hash tables, where the distribution of keys per cell can be accurately approximated by a Poisson distribution.[37] Moreover, factorials naturally appear in formulae from quantum and statistical physics, where one often considers all the possible permutations of a set of particles. In statistical mechanics, calculations of entropy such as Boltzmann's entropy formula or the Sackur–Tetrode equation must correct the count of microstates by dividing by the factorials of the numbers of each type of indistinguishable particle to avoid the Gibbs paradox. Quantum physics provides the underlying reason for why these corrections are necessary.[38]

Properties

Growth and approximation

See main article: Stirling's approximation.

As a function the factorial has faster than exponential growth, but grows more slowly than a double exponential function.[39] Its growth rate is similar but slower by an exponential factor. One way of approaching this result is by taking the natural logarithm of the factorial, which turns its product formula into a sum, and then estimating the sum by an integral:\ln n! = \sum_^n \ln x \approx \int_1^n\ln x\, dx=n\ln n-n+1.Exponentiating the result (and ignoring the negligible

+1

term) approximates

n!

as More carefully bounding the sum both above and below by an integral, using the trapezoid rule, shows that this estimate needs a correction factor proportional The constant of proportionality for this correction can be found from the Wallis product, which expresses

\pi

as a limiting ratio of factorials and powers of two. The result of these corrections is Stirling's approximation:[40] n!\sim\sqrt\left(\frac\right)^n\,.Here, the

\sim

symbol means that, as

n

goes to infinity, the ratio between the left and right sides approaches one in the limit.Stirling's formula provides the first term in an asymptotic series that becomes even more accurate when taken to greater numbers of terms:[41] n! \sim \sqrt\left(\frac\right)^n \left(1 +\frac+\frac - \frac -\frac+ \cdots \right).An alternative version uses only odd exponents in the correction terms:[41] n! \sim \sqrt\left(\frac\right)^n \exp\left(\frac - \frac + \frac -\frac+ \cdots \right).Many other variations of these formulas have also been developed, by Srinivasa Ramanujan, Bill Gosper, and others.[41]

The binary logarithm of the factorial, used to analyze comparison sorting, can be very accurately estimated using Stirling's approximation. In the formula below, the

O(1)

term invokes big O notation.[42] \log_2 n! = n\log_2 n-(\log_2 e)n + \frac12\log_2 n + O(1).

Divisibility and digits

See main article: Legendre's formula. The product formula for the factorial implies that

n!

is divisible by all prime numbers that are at and by no larger prime numbers.[43] More precise information about its divisibility is given by Legendre's formula, which gives the exponent of each prime

p

in the prime factorization of

n!

as[44] [45] \sum_^\infty \left \lfloor \frac n \right \rfloor=\frac.Here

sp(n)

denotes the sum of the digits and the exponent given by this formula can also be interpreted in advanced mathematics as the -adic valuation of the factorial.[45] Applying Legendre's formula to the product formula for binomial coefficients produces Kummer's theorem, a similar result on the exponent of each prime in the factorization of a binomial coefficient.[46] Grouping the prime factors of the factorial into prime powers in different ways produces the multiplicative partitions of factorials.[47]

The special case of Legendre's formula for

p=5

gives the number of trailing zeros in the decimal representation of the factorials. According to this formula, the number of zeros can be obtained by subtracting the base-5 digits of

n

from

n

, and dividing the result by four. Legendre's formula implies that the exponent of the prime

p=2

is always larger than the exponent for so each factor of five can be paired with a factor of two to produce one of these trailing zeros.[48] The leading digits of the factorials are distributed according to Benford's law.[49] Every sequence of digits, in any base, is the sequence of initial digits of some factorial number in that base.[50]

Another result on divisibility of factorials, Wilson's theorem, states that

(n-1)!+1

is divisible by

n

if and only if

n

is a prime number.[43] For any given the Kempner function of

x

is given by the smallest

n

for which

x

divides For almost all numbers (all but a subset of exceptions with asymptotic density zero), it coincides with the largest prime factor

The product of two factorials, always evenly divides There are infinitely many factorials that equal the product of other factorials: if

n

is itself any product of factorials, then

n!

equals that same product multiplied by one more factorial, The only known examples of factorials that are products of other factorials but are not of this "trivial" form are and It would follow from the conjecture that there are only finitely many nontrivial examples.[51]

The greatest common divisor of the values of a primitive polynomial of degree

d

over the integers evenly divides

Continuous interpolation and non-integer generalization

See main article: Gamma function. There are infinitely many ways to extend the factorials to a continuous function. The most widely used of these uses the gamma function, which can be defined for positive real numbers as the integral \Gamma(z) = \int_0^\infty x^ e^\,dx.The resulting function is related to the factorial of a non-negative integer

n

by the equation n!=\Gamma(n+1),which can be used as a definition of the factorial for non-integer arguments.At all values

x

for which both

\Gamma(x)

and

\Gamma(x-1)

are defined, the gamma function obeys the functional equation \Gamma(n)=(n-1)\Gamma(n-1),generalizing the recurrence relation for the factorials.[52]

z

whose real part is positive. It can be extended to the non-integer points in the rest of the complex plane by solving for Euler's reflection formula\Gamma(z)\Gamma(1-z)=\frac.However, this formula cannot be used at integers because, for them, the

\sin\piz

term would produce a division by zero. The result of this extension process is an analytic function, the analytic continuation of the integral formula for the gamma function. It has a nonzero value at all complex numbers, except for the non-positive integers where it has simple poles. Correspondingly, this provides a definition for the factorial at all complex numbers other than the negative integers.[53] One property of the gamma function, distinguishing it from other continuous interpolations of the factorials, is given by the Bohr–Mollerup theorem, which states that the gamma function (offset by one) is the only log-convex function on the positive real numbers that interpolates the factorials and obeys the same functional equation. A related uniqueness theorem of Helmut Wielandt states that the complex gamma function and its scalar multiples are the only holomorphic functions on the positive complex half-plane that obey the functional equation and remain bounded for complex numbers with real part between 1 and 2.[54]

Other complex functions that interpolate the factorial values include Hadamard's gamma function, which is an entire function over all the complex numbers, including the non-positive integers.[55] [56] In the -adic numbers, it is not possible to continuously interpolate the factorial function directly, because the factorials of large integers (a dense subset of the -adics) converge to zero according to Legendre's formula, forcing any continuous function that is close to their values to be zero everywhere. Instead, the -adic gamma function provides a continuous interpolation of a modified form of the factorial, omitting the factors in the factorial that are divisible by .[57]

The digamma function is the logarithmic derivative of the gamma function. Just as the gamma function provides a continuous interpolation of the factorials, offset by one, the digamma function provides a continuous interpolation of the harmonic numbers, offset by the Euler–Mascheroni constant.[58]

Computation

The factorial function is a common feature in scientific calculators.[59] It is also included in scientific programming libraries such as the Python mathematical functions module[60] and the Boost C++ library.[61] If efficiency is not a concern, computing factorials is trivial: just successively multiply a variable initialized by the integers up The simplicity of this computation makes it a common example in the use of different computer programming styles and methods.[62]

The computation of

n!

can be expressed in pseudocode using iteration[63] as define factorial(n): f := 1 for i := 1, 2, 3, ..., n: f := f * i return for using recursion[64] based on its recurrence relation as define factorial(n): if (n = 0) return 1 return n * factorial(n − 1)Other methods suitable for its computation include memoization,[65] dynamic programming,[66] and functional programming.[67] The computational complexity of these algorithms may be analyzed using the unit-cost random-access machine model of computation, in which each arithmetic operation takes constant time and each number uses a constant amount of storage space. In this model, these methods can compute

n!

in time and the iterative version uses space Unless optimized for tail recursion, the recursive version takes linear space to store its call stack.[68] However, this model of computation is only suitable when

n

is small enough to allow

n!

to fit into a machine word.[69] The values 12! and 20! are the largest factorials that can be stored in, respectively, the 32-bit and 64-bit integers.[70] Floating point can represent larger factorials, but approximately rather than exactly, and will still overflow for factorials larger than

The exact computation of larger factorials involves arbitrary-precision arithmetic, because of fast growth and integer overflow. Time of computation can be analyzed as a function of the number of digits or bits in the result.[70] By Stirling's formula,

n!

has

b=O(nlogn)

bits. The Schönhage–Strassen algorithm can produce a product in time and faster multiplication algorithms taking time

O(blogb)

are known.[71] However, computing the factorial involves repeated products, rather than a single multiplication, so these time bounds do not apply directly. In this setting, computing

n!

by multiplying the numbers from 1 in sequence is inefficient, because it involves

n

multiplications, a constant fraction of which take time

O(nlog2n)

each, giving total time A better approach is to perform the multiplications as a divide-and-conquer algorithm that multiplies a sequence of

i

numbers by splitting it into two subsequences of

i/2

numbers, multiplies each subsequence, and combines the results with one last multiplication. This approach to the factorial takes total time one logarithm comes from the number of bits in the factorial, a second comes from the multiplication algorithm, and a third comes from the divide and conquer.[72]

Even better efficiency is obtained by computing from its prime factorization, based on the principle that exponentiation by squaring is faster than expanding an exponent into a product.[73] [74] An algorithm for this by Arnold Schönhage begins by finding the list of the primes up for instance using the sieve of Eratosthenes, and uses Legendre's formula to compute the exponent for each prime. Then it computes the product of the prime powers with these exponents, using a recursive algorithm, as follows:

The product of all primes up to

n

is an

O(n)

-bit number, by the prime number theorem, so the time for the first step is

O(nlog2n)

, with one logarithm coming from the divide and conquer and another coming from the multiplication algorithm. In the recursive calls to the algorithm, the prime number theorem can again be invoked to prove that the numbers of bits in the corresponding products decrease by a constant factor at each level of recursion, so the total time for these steps at all levels of recursion adds in a geometric series The time for the squaring in the second step and the multiplication in the third step are again because each is a single multiplication of a number with

O(nlogn)

bits. Again, at each level of recursion the numbers involved have a constant fraction as many bits (because otherwise repeatedly squaring them would produce too large a final result) so again the amounts of time for these steps in the recursive calls add in a geometric series Consequentially, the whole algorithm takes proportional to a single multiplication with the same number of bits in its result.[74]

Related sequences and functions

See main article: List of factorial and binomial topics. Several other integer sequences are similar to or related to the factorials:

Alternating factorial
  • The alternating factorial is the absolute value of the alternating sum of the first

    n

    factorials, These have mainly been studied in connection with their primality; only finitely many of them can be prime, but a complete list of primes of this form is not known.[75]
    Bhargava factorial
  • The Bhargava factorials are a family of integer sequences defined by Manjul Bhargava with similar number-theoretic properties to the factorials, including the factorials themselves as a special case.
    Double factorial
  • The product of all the odd integers up to some odd positive is called the double factorial and denoted by That is, (2k-1)!! = \prod_^k (2i-1) = \frac. For example, . Double factorials are used in trigonometric integrals,[76] in expressions for the gamma function at half-integers and the volumes of hyperspheres,[77] and in counting binary trees and perfect matchings.[78]
    Exponential factorial
  • Just as triangular numbers sum the numbers from

    1

    and factorials take their product, the exponential factorial exponentiates. The exponential factorial is defined recursively For example, the exponential factorial of 4 is 4^=262144. These numbers grow much more quickly than regular factorials.[79]
    Falling factorial
  • The notations

    (x)n

    or

    x\underline

    are sometimes used to represent the product of the greatest

    n

    integers counting up to and equal to This is also known as a falling factorial or backward factorial, and the

    (x)n

    notation is a Pochhammer symbol. Falling factorials count the number of different sequences of

    n

    distinct items that can be drawn from a universe of

    x

    items.[80] They occur as coefficients in the higher derivatives of polynomials,[81] and in the factorial moments of random variables.[82]
    Hyperfactorials
  • The hyperfactorial of

    n

    is the product

    11 ⋅ 22 … nn

    . These numbers form the discriminants of Hermite polynomials.[83] They can be continuously interpolated by the K-function,[84] and obey analogues to Stirling's formula[85] and Wilson's theorem.[86]
    Jordan–Pólya numbers
  • The Jordan–Pólya numbers are the products of factorials, allowing repetitions. Every tree has a symmetry group whose number of symmetries is a Jordan–Pólya number, and every Jordan–Pólya number counts the symmetries of some tree.
    Primorial

    n\#

    is the product of prime numbers less than or equal this construction gives them some similar divisibility properties to factorials,[30] but unlike factorials they are squarefree.[87] As with the factorial primes researchers have studied primorial primes
    Subfactorial
  • The subfactorial yields the number of derangements of a set of

    n

    objects. It is sometimes denoted

    !n

    , and equals the closest integer
    Superfactorial
  • The superfactorial of

    n

    is the product of the first

    n

    factorials. The superfactorials are continuously interpolated by the Barnes G-function.[88]

    Notes and References

    1. Book: Ronald L.. Graham. Ronald Graham . Donald E.. Knuth. Donald Knuth. Oren. Patashnik. Oren Patashnik. 1988. Concrete Mathematics. Addison-Wesley. Reading, MA. 0-201-14236-8. Concrete Mathematics. 111.
    2. Jadhav . Dipak . August 2021 . 10.18732/hssa67 . History of Science in South Asia . 209–231 . University of Alberta Libraries . Jaina Thoughts on Unity Not Being a Number . 9. 238656716 . free . . See discussion of dating on p. 211.
    3. Book: Datta . Bibhutibhusan . Bibhutibhushan Datta . Singh . Awadhesh Narayan . Kolachana . Aditya . Mahesh . K. . Ramasubramanian . K. . Use of permutations and combinations in India . 10.1007/978-981-13-7326-8_18 . 356–376 . Springer Singapore . Sources and Studies in the History of Mathematics and Physical Sciences . Studies in Indian Mathematics and Astronomy: Selected Articles of Kripa Shankar Shukla . 2019. 978-981-13-7325-1 . 191141516 . . Revised by K. S. Shukla from a paper in Indian Journal of History of Science 27 (3): 231–249, 1992, . See p. 363.
    4. Biggs . Norman L. . Norman L. Biggs . May 1979 . The roots of combinatorics . . 6 . 2 . 109–136 . 10.1016/0315-0860(79)90074-0 . 0530622 .
    5. Katz . Victor J. . Victor J. Katz . June 1994 . 2 . . 40248112 . 26–30 . Ethnomathematics in the classroom . 14.
    6. https://en.wikisource.org/wiki/Sefer_Yetzirah#CHAPTER_IV Sefer Yetzirah at Wikisource
    7. Rashed . Roshdi . Roshdi Rashed . 10.1007/BF00717654 . 4 . . fr . 595903 . 305–321 . Ibn al-Haytham et le théorème de Wilson . 22 . 1980. 120885025 .
    8. Acerbi . F. . 10.1007/s00407-003-0067-0 . 6 . . 41134173 . 2004966 . 465–502 . On the shoulders of Hipparchus: a reappraisal of ancient Greek combinatorics . 57 . 2003. 122758966 .
    9. Book: Katz, Victor J.. Wilson. Robin. Watkins. John J.. Combinatorics: Ancient & Modern. Oxford University Press. 2013. 978-0-19-965659-2. Victor J. Katz. Chapter 4: Jewish combinatorics. 109–121. See p. 111.
    10. Hunt . Katherine . May 2018 . 10.1215/10829636-4403136 . 2 . Journal of Medieval and Early Modern Studies . 387–412 . The Art of Changes: Bell-Ringing, Anagrams, and the Culture of Combination in Seventeenth-Century England . 48.
    11. Book: Stedman, Fabian. Fabian Stedman. Campanalogia. 1677. London. 6–9. The publisher is given as "W.S." who may have been William Smith, possibly acting as agent for the Society of College Youths, to which society the "Dedicatory" is addressed.
    12. Book: Knobloch, Eberhard. Wilson. Robin. Watkins. John J.. Combinatorics: Ancient & Modern. Oxford University Press. 2013. 978-0-19-965659-2. Eberhard Knobloch. Chapter 5: Renaissance combinatorics. 123–145. See p. 126.
    13. Book: Ebbinghaus . H.-D. . Heinz-Dieter Ebbinghaus . Hermes . H. . Hans Hermes . Hirzebruch . F. . Friedrich Hirzebruch . Koecher . M. . Max Koecher . Mainzer . K. . Klaus Mainzer . Neukirch . J. . Jürgen Neukirch . Prestel . A. . Remmert . R. . Reinhold Remmert . 10.1007/978-1-4612-1005-4 . 0-387-97202-1 . 1066206 . 131 . Springer-Verlag . New York . Graduate Texts in Mathematics . Numbers . 123 . 1990.
    14. Dutka . Jacques . 10.1007/BF00389433 . 3 . . 41133918 . 1171521 . 225–249 . The early history of the factorial function . 43 . 1991. 122237769 .
    15. Book: Dickson, Leonard E.. Leonard Eugene Dickson. History of the Theory of Numbers. History of the Theory of Numbers. 1. Carnegie Institution of Washington. 1919. Chapter IX: Divisibility of factorials and multinomial coefficients. 263–278. https://archive.org/details/historyoftheoryo01dick/page/262. See in particular p. 263.
    16. Book: Cajori, Florian . Florian Cajori . 448–449. Factorial "" . https://archive.org/details/AHistoryOfMathematicalNotationVolII/page/n93 . 71–77 . The Open Court Publishing Company . A History of Mathematical Notations, Volume II: Notations Mainly in Higher Mathematics . A History of Mathematical Notations . 1929.
    17. Web site: Earliest Known Uses of Some of the Words of Mathematics (F). MacTutor History of Mathematics archive. University of St Andrews. Jeff. Miller.
    18. Craik . Alex D. D. . 10.1080/00029890.2005.11920176 . 2 . . 30037410 . 2121322 . 119–130 . Prehistory of Faà di Bruno's formula . 112 . 2005. 45380805 .
    19. Book: Arbogast, Louis François Antoine. Du calcul des dérivations. Louis François Antoine Arbogast. L'imprimerie de Levrault, frères. Strasbourg. 1800. 364–365. fr.
    20. Book: Dorf, Richard C.. CRC Handbook of Engineering Tables. CRC Press. 2003. 5-5. Factorials. https://books.google.com/books?id=TCLOBgAAQBAJ&pg=SA5-PA5. 978-0-203-00922-2.
    21. Book: Hamkins, Joel David . Joel David Hamkins . 978-0-262-53979-1 . Cambridge, Massachusetts . 4205951 . 50 . MIT Press . Proof and the Art of Mathematics . 2020.
    22. Haberman . Bruria . Averbuch . Haim . Caspersen . Michael E. . Joyce . Daniel T. . Goelman . Don . Utting . Ian . The case of base cases: Why are they so difficult to recognize? Student difficulties with recursion . 10.1145/544414.544441 . 84–88 . Association for Computing Machinery . Proceedings of the 7th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, ITiCSE 2002, Aarhus, Denmark, June 24-28, 2002 . 2002.
    23. Book: Solved Problems in Analysis: As Applied to Gamma, Beta, Legendre and Bessel Functions. Dover Books on Mathematics. Orin J.. Farrell. Bertram. Ross. Courier Corporation. 1971. 978-0-486-78308-6. 10.
    24. Book: The Book of Numbers . Conway . John H. . Guy . Richard . 1998 . Springer Science & Business Media . 978-0-387-97993-9 . en . John Horton Conway . Richard K. Guy . 55–56. Factorial numbers.
    25. Book: Riordan, John . John Riordan (mathematician) . 0096594 . 76 . Chapman & Hall . Wiley Publications in Mathematical Statistics . An Introduction to Combinatorial Analysis . 1958. 9781400854332 .
    26. Randić . Milan . 10.1007/BF01205340 . 1 . Journal of Mathematical Chemistry . 895533 . 145–152 . On the evaluation of the characteristic polynomial via symmetric function theory . 1 . 1987. 121752631 .
    27. Book: Hill, Victor E.. Groups and Characters. Chapman & Hall. 2000. 1739394. 978-1-351-44381-4. 70. 8.1 Proposition: Symmetric group . https://books.google.com/books?id=yjL3DwAAQBAJ&pg=PA70.
    28. Book: Wilf, Herbert S. . Herbert Wilf . 3rd . 978-1-56881-279-3 . 2172781 . 22 . A K Peters . Wellesley, Massachusetts . generatingfunctionology . 2006.
    29. Book: Ore, Øystein . Øystein Ore . New York . 0026059 . 66 . McGraw-Hill . Number Theory and Its History . 1948. 9780486656205 .
    30. Caldwell . Chris K. . Gallot . Yves . 10.1090/S0025-5718-01-01315-1 . 237 . . 1863013 . 441–448 . On the primality of

      n!\pm1

      and

      2 x 3 x 5 x ... x p\pm1

      . 71 . 2002. free .
    31. Book: Neale, Vicky. Closing the Gap: The Quest to Understand Prime Numbers. Vicky Neale. Oxford University Press. 2017. 978-0-19-878828-7. 146–147.
    32. Erdős . Pál . Paul Erdős . Acta Litt. Sci. Szeged . de . 194–198 . Beweis eines Satzes von Tschebyschef . Proof of a theorem of Chebyshev . 5 . 1932 . 0004.10103.
    33. Book: Chvátal, Vašek . Václav Chvátal . 1.5: Erdős's proof of Bertrand's postulate . https://books.google.com/books?id=_gVDEAAAQBAJ&pg=PA7 . 10.1017/9781108912181 . 978-1-108-83183-3 . 4282416 . 7–10 . Cambridge University Press . Cambridge, England . The Discrete Mathematical Charms of Paul Erdős: A Simple Introduction . 2021. 242637862 .
    34. Fraenkel . Aviezri S. . Aviezri Fraenkel . 10.1080/00029890.1985.11971550 . 2 . . 2322638 . 777556 . 105–114 . Systems of numeration . 92 . 1985.
    35. Book: Pitman, Jim . 3.5: The Poisson distribution . 10.1007/978-1-4612-4374-8 . 222–236 . Springer . New York . Probability . 1993. 978-0-387-94594-1 .
    36. Book: Algorithm Design. Jon. Kleinberg. Jon Kleinberg. Éva. Tardos. Éva Tardos. Addison-Wesley. 2006. 55.
    37. Book: Algorithms. 4th. Addison-Wesley. Robert. Sedgewick. Robert Sedgewick (computer scientist). Kevin. Wayne. 2011. 978-0-13-276256-4. 466.
    38. Book: Kardar, Mehran . Mehran Kardar . Statistical Physics of Particles . Statistical Physics of Particles . 2007 . . 978-0-521-87342-0 . 860391091 . 107–110, 181–184.
    39. Book: Cameron, Peter J. . Peter Cameron (mathematician) . 2.4: Orders of magnitude . 978-0-521-45133-8 . 12–14 . Cambridge University Press . Combinatorics: Topics, Techniques, Algorithms . 1994.
    40. Book: Palmer, Edgar M. . Appendix II: Stirling's formula . 0-471-81577-2 . Chichester . 795795 . 127–128 . John Wiley & Sons . Wiley-Interscience Series in Discrete Mathematics . Graphical Evolution: An introduction to the theory of random graphs . 1985.
    41. Chen . Chao-Ping . Lin . Long . 10.1016/j.aml.2012.06.025 . 12 . Applied Mathematics Letters . 2967837 . 2322–2326 . Remarks on asymptotic expansions for the gamma function . 25 . 2012. free .
    42. Book: Knuth, Donald E.. The Art of Computer Programming, Volume 3: Sorting and Searching. Donald Knuth. 2nd. Addison-Wesley. 1998. 978-0-321-63578-5. 182.
    43. Book: Beiler, Albert H.. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover Recreational Math Series. Courier Corporation. 1966. 2nd. 978-0-486-21096-4. 49.
    44. . "1.4: Legendre's formula". pp. 6–7.
    45. Book: Robert, Alain M. . Alain M. Robert . 3.1: The valuation of a factorial . 10.1007/978-1-4757-3254-2 . 0-387-98669-3 . 1760253 . 241–242 . Springer-Verlag . New York . . A Course in Analysis . 198 . 2000.
    46. Book: Peitgen . Heinz-Otto Peitgen . Heinz-Otto . Jürgens . Hartmut . Hartmut Jürgens . Saupe . Dietmar . Dietmar Saupe . Kummer's result and Legendre's identity . 10.1007/b97624 . New York . 399–400 . Springer . Chaos and Fractals: New Frontiers of Science . 2004. 978-1-4684-9396-2 .
    47. Alladi. Krishnaswami. Grinstead. Charles. Krishnaswami Alladi . On the decomposition of n! into prime powers. Journal of Number Theory. 1977 . en. 9. 4. 452–458. 10.1016/0022-314x(77)90006-3. free.
    48. Book: Koshy, Thomas. Elementary Number Theory with Applications. 2nd. Elsevier. 2007. 978-0-08-054709-1. Example 3.12. 178. https://books.google.com/books?id=d5Z5I3gnFh0C&pg=PA178.
    49. Diaconis . Persi . Persi Diaconis . 10.1214/aop/1176995891 . 1 . . 422186 . 72–81 . The distribution of leading digits and uniform distribution mod 1 . 5 . 1977. free .
    50. Bird. R. S.. Richard Bird (computer scientist). 10.1080/00029890.1972.11993051. The American Mathematical Monthly. 2978087. 302553. 367–370. Integers with given initial digits. 79. 1972. 4.
    51. Luca . Florian . Florian Luca . 10.1017/S0305004107000308 . 3 . . 2373957 . 533–542 . On factorials which are products of factorials . 143 . 2007. 2007MPCPS.143..533L . 120875316 .
    52. Davis . Philip J. . Philip J. Davis . 10.1080/00029890.1959.11989422 . . 2309786 . 106810 . 849–869 . Leonhard Euler's integral: A historical profile of the gamma function . 66 . 1959 . 10 . 2021-12-20 . 2023-01-01 . https://web.archive.org/web/20230101190952/https://www.maa.org/programs/maa-awards/writing-awards/leonhard-eulers-integral-an-historical-profile-of-the-gamma-function . dead .
    53. Borwein . Jonathan M. . Jonathan Borwein . Corless . Robert M. . 10.1080/00029890.2018.1420983 . 5 . . 3785875 . 400–424 . Gamma and factorial in the Monthly . 125 . 2018. 1703.05349 . 119324101 .
    54. Remmert . Reinhold . Reinhold Remmert . 10.1080/00029890.1996.12004726 . 3 . . 2975370 . 1376175 . 214–220 . Wielandt's theorem about the . 103 . 1996.
    55. Book: Hadamard, J.. Jacques Hadamard. Sur l'expression du produit par une fonction entière. Œuvres de Jacques Hadamard. Centre National de la Recherche Scientifiques. Paris. 1968. http://www.luschny.de/math/factorial/hadamard/HadamardFactorial.pdf. 1894. fr.
    56. Alzer . Horst . 10.1007/s12188-008-0009-5 . 1 . Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg . 2541340 . 11–23 . A superadditive property of Hadamard's gamma function . 79 . 2009. 123691692 .
    57. . "7.1: The gamma function pp. 366–385.
    58. Ross . Bertram . 10.1080/0025570X.1978.11976704 . 3 . . 2689999 . 1572267 . 176–179 . The psi function . 51 . 1978.
    59. Book: Understandable Statistics: Concepts and Methods. Charles Henry. Brase. Corrinne Pellillo. Brase. 11th. Cengage Learning. 2014. 978-1-305-14290-9. 182.
    60. Web site: math — Mathematical functions. Python 3 Documentation: The Python Standard Library. 2021-12-21.
    61. Web site: Factorial. Boost 1.78.0 Documentation: Math Special Functions. 2021-12-21.
    62. Book: Drawing Programs: The Theory and Practice of Schematic Functional Programming. Tom. Addis. Jan. Addis. Springer. 2009. 978-1-84882-618-2. 149–150.
    63. Book: Chapman, Stephen J.. MATLAB Programming for Engineers. 6th. Cengage Learning. 2019. 978-0-357-03052-3. 215. Example 5.2: The factorial function. https://books.google.com/books?id=jVEzEAAAQBAJ&pg=PA215.
    64. Book: The Computing Universe: A Journey through a Revolution. Tony. Hey. Gyuri. Pápay. Cambridge University Press. 2014. 9781316123225. 64.
    65. Book: Bolboaca, Alexandru. Hands-On Functional Programming with C++: An effective guide to writing accelerated functional code using C++17 and C++20. Packt Publishing. 2019. 978-1-78980-921-3. 188.
    66. Book: Gray, John W.. Mastering Mathematica: Programming Methods and Applications. Academic Press. 2014. 978-1-4832-1403-0. 233–234.
    67. Book: Torra, Vicenç. Scala From a Functional Programming Perspective: An Introduction to the Programming Language. 9980. Lecture Notes in Computer Science. Springer. 2016. 978-3-319-46481-7. 96.
    68. Book: Sussman, Gerald Jay. Functional Programming and Its Applications: An Advanced Course. Cambridge University Press. CREST Advanced Courses. LISP, programming, and implementation. Gerald Jay Sussman. 1982. 29–72. 978-0-521-24503-6. See in particular p. 34.
    69. Chaudhuri . Ranjan . June 2003 . 10.1145/782941.782977 . 2 . ACM SIGCSE Bulletin . 43–44 . Association for Computing Machinery . Do the arithmetic operations really execute in constant time? . 35. 13629142 .
    70. Winkler . Jürgen F. H. . Kauer . Stefan . March 1997 . 10.1145/251634.251638 . 3 . ACM SIGPLAN Notices . 38–41 . Association for Computing Machinery . Proving assertions is also useful . 32. 17347501 . free .
    71. Harvey . David . van der Hoeven . Joris . Joris van der Hoeven . 10.4007/annals.2021.193.2.4 . 2 . . 4224716 . 563–617 . Second Series . Integer multiplication in time

      O(nlogn)

      . 193 . 2021. 109934776 .
    72. Book: Arndt, Jörg. Matters Computational: Ideas, Algorithms, Source Code. Springer. 2011. 34.1.1.1: Computation of the factorial. 651–652. See also "34.1.5: Performance", pp. 655–656.
    73. Borwein . Peter B. . Peter Borwein . 10.1016/0196-6774(85)90006-9 . 3 . . 800727 . 376–380 . On the complexity of calculating factorials . 6 . 1985.
    74. Book: Schönhage, Arnold. 1994. Fast algorithms: a multitape Turing machine implementation. B.I. Wissenschaftsverlag. 226.
    75. . "B43: Alternating sums of factorials". pp. 152–153.
    76. Meserve . B. E. . 10.2307/2306136 . 7 . . 1527019 . 425–426 . Classroom Notes: Double Factorials . 55 . 1948. 2306136 .
    77. Some dimension problems in molecular databases. Paul G.. Mezey. 2009. Journal of Mathematical Chemistry. 45. 1. 1–6. 10.1007/s10910-008-9365-8. 120103389. .
    78. Dale . M. R. T. . Moon . J. W. . 10.1016/0378-3758(93)90035-5 . 1 . . 1209991 . 75–87 . The permuted analogues of three Catalan sets . 34 . 1993. .
    79. Luca . Florian . Florian Luca . Marques . Diego . 3 . . 2769339 . 703–718 . Perfect powers in the summatory function of the power tower . 22 . 2010. 10.5802/jtnb.740 . free .
    80. Book: Sagan, Bruce E. . Bruce Sagan . Theorem 1.2.1 . https://books.google.com/books?id=DYgEEAAAQBAJ&pg=PA5 . 978-1-4704-6032-7 . Providence, Rhode Island . 4249619 . 5 . American Mathematical Society . Graduate Studies in Mathematics . Combinatorics: the Art of Counting . 210 . 2020.
    81. Book: Hardy, G. H.. G. H. Hardy. A Course of Pure Mathematics. A Course of Pure Mathematics. 3rd. Cambridge University Press. 1921. Examples XLV. 215. https://archive.org/details/coursepuremath00hardrich/page/n229.
    82. Book: Daley . D. J. . Vere-Jones . D. . 5.2: Factorial moments, cumulants, and generating function relations for discrete distributions . https://books.google.com/books?id=Af7lBwAAQBAJ&pg=PA112 . 0-387-96666-8 . New York . 950166 . 112 . Springer-Verlag . Springer Series in Statistics . An Introduction to the Theory of Point Processes . 1988.
    83. A002109 . Hyperfactorials: Product_ k^k.
    84. Kinkelin . H. . Hermann Kinkelin . 10.1515/crll.1860.57.122 . . de . 122–138 . Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechung . On a transcendental variation of the gamma function and its application to the integral calculus . 1860 . 1860. 57 . 120627417 .
    85. Glaisher . J. W. L. . James Whitbread Lee Glaisher . . 43–47 . On the product . 7 . 1877.
    86. Aebi . Christian . Cairns . Grant . 10.4169/amer.math.monthly.122.5.433 . 5 . . 10.4169/amer.math.monthly.122.5.433 . 3352802 . 433–443 . Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials . 122 . 2015. 207521192 .
    87. Book: Nelson, Randolph . 10.1007/978-3-030-37861-5 . 978-3-030-37861-5 . Cham . 4297795 . 127 . Springer . A Brief Journey in Discrete Mathematics . 2020. 213895324 .
    88. Barnes. E. W.. Ernest Barnes. 30.0389.02. The Quarterly Journal of Pure and Applied Mathematics. 264–314. https://gdz.sub.uni-goettingen.de/id/PPN600494829_0031?tify={%22pages%22:[268,%22view%22:%22toc%22} The theory of the -function]. 31. 1900.