In mathematics, an exponential field is a field with a further unary operation that is a homomorphism from the field's additive group to its multiplicative group. This generalizes the usual idea of exponentiation on the real numbers, where the base is a chosen positive real number.
A field is an algebraic structure composed of a set of elements, F, two binary operations, addition (+) such that F forms an abelian group with identity 0F and multiplication (·), such that F excluding 0F forms an abelian group under multiplication with identity 1F, and such that multiplication is distributive over addition, that is for any elements a, b, c in F, one has . If there is also a function E that maps F into F, and such that for every a and b in F one has
\begin{align}&E(a+b)=E(a) ⋅ E(b),\\&E(0F)=1F\end{align}
There is a trivial exponential function on any field, namely the map that sends every element to the identity element of the field under multiplication. Thus every field is trivially also an exponential field, so the cases of interest to mathematicians occur when the exponential function is non-trivial.
Exponential fields are sometimes required to have characteristic zero as the only exponential function on a field with nonzero characteristic is the trivial one.[2] To see this first note that for any element x in a field with characteristic p > 0,
1=E(0)=E(\underbrace{x+x+ … +x}pofthese)=E(x)E(x) … E(x)=E(x)p.
(E(x)-1)p=E(x)p-1p=E(x)p-1=0.
The underlying set F may not be required to be a field but instead allowed to simply be a ring, R, and concurrently the exponential function is relaxed to be a homomorphism from the additive group in R to the multiplicative group of units in R. The resulting object is called an exponential ring.[2]
An example of an exponential ring with a nontrivial exponential function is the ring of integers Z equipped with the function E which takes the value +1 at even integers and -1 at odd integers, i.e., the function
n\mapsto(-1)n.
Exponential fields are much-studied objects in model theory, occasionally providing a link between it and number theory as in the case of Zilber's work on Schanuel's conjecture. It was proved in the 1990s that Rexp is model complete, a result known as Wilkie's theorem. This result, when combined with Khovanskiĭ's theorem on pfaffian functions, proves that Rexp is also o-minimal.[6] On the other hand, it is known that Cexp is not model complete.[7] The question of decidability is still unresolved. Alfred Tarski posed the question of the decidability of Rexp and hence it is now known as Tarski's exponential function problem. It is known that if the real version of Schanuel's conjecture is true then Rexp is decidable.[8]