In mathematics, a simple Lie group is a connected non-abelian Lie group G which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces.
Together with the commutative Lie group of the real numbers,
R
R
The first classification of simple Lie groups was by Wilhelm Killing, and this work was later perfected by Élie Cartan. The final classification is often referred to as Killing-Cartan classification.
Unfortunately, there is no universally accepted definition of a simple Lie group. In particular, it is not always defined as a Lie group that is simple as an abstract group. Authors differ on whether a simple Lie group has to be connected, or on whether it is allowed to have a non-trivial center, or on whether
R
The most common definition is that a Lie group is simple if it is connected, non-abelian, and every closed connected normal subgroup is either the identity or the whole group. In particular, simple groups are allowed to have a non-trivial center, but
R
In this article the connected simple Lie groups with trivial center are listed. Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover, whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the center.
An equivalent definition of a simple Lie group follows from the Lie correspondence: A connected Lie group is simple if its Lie algebra is simple. An important technical point is that a simple Lie group may contain discrete normal subgroups. For this reason, the definition of a simple Lie group is not equivalent to the definition of a Lie group that is simple as an abstract group.
Simple Lie groups include many classical Lie groups, which provide a group-theoretic underpinning for spherical geometry, projective geometry and related geometries in the sense of Felix Klein's Erlangen program. It emerged in the course of classification of simple Lie groups that there exist also several exceptional possibilities not corresponding to any familiar geometry. These exceptional groups account for many special examples and configurations in other branches of mathematics, as well as contemporary theoretical physics.
As a counterexample, the general linear group is neither simple, nor semisimple. This is because multiples of the identity form a nontrivial normal subgroup, thus evading the definition. Equivalently, the corresponding Lie algebra has a degenerate Killing form, because multiples of the identity map to the zero element of the algebra. Thus, the corresponding Lie algebra is also neither simple nor semisimple. Another counter-example are the special orthogonal groups in even dimension. These have the matrix
-I
A semisimple Lie group is a connected Lie group so that its only closed connected abelian normal subgroup is the trivial subgroup. Every simple Lie group is semisimple. More generally, any product of simple Lie groups is semisimple, and any quotient of a semisimple Lie group by a closed subgroup is semisimple. Every semisimple Lie group can be formed by taking a product of simple Lie groups and quotienting by a subgroup of its center. In other words, every semisimple Lie group is a central product of simple Lie groups. The semisimple Lie groups are exactly the Lie groups whose Lie algebras are semisimple Lie algebras.
See main article: simple Lie algebra. The Lie algebra of a simple Lie group is a simple Lie algebra. This is a one-to-one correspondence between connected simple Lie groups with trivial center and simple Lie algebras of dimension greater than 1. (Authors differ on whether the one-dimensional Lie algebra should be counted as simple.)
Over the complex numbers the semisimple Lie algebras are classified by their Dynkin diagrams, of types "ABCDEFG". If L is a real simple Lie algebra, its complexification is a simple complex Lie algebra, unless L is already the complexification of a Lie algebra, in which case the complexification of L is a product of two copies of L. This reduces the problem of classifying the real simple Lie algebras to that of finding all the real forms of each complex simple Lie algebra (i.e., real Lie algebras whose complexification is the given complex Lie algebra). There are always at least 2 such forms: a split form and a compact form, and there are usually a few others. The different real forms correspond to the classes of automorphisms of order at most 2 of the complex Lie algebra.
Symmetric spaces are classified as follows.
First, the universal cover of a symmetric space is still symmetric, so we can reduce to the case of simply connected symmetric spaces. (For example, the universal cover of a real projective plane is a sphere.)
Second, the product of symmetric spaces is symmetric, so we may as well just classify the irreducible simply connected ones (where irreducible means they cannot be written as a product of smaller symmetric spaces).
The irreducible simply connected symmetric spaces are the real line, and exactly two symmetric spaces corresponding to each non-compact simple Lie group G,one compact and one non-compact. The non-compact one is a cover of the quotient of G by a maximal compact subgroup H, and the compact one is a cover of the quotient ofthe compact form of G by the same subgroup H. This duality between compact and non-compact symmetric spaces is a generalization of the well known duality between spherical and hyperbolic geometry.
A symmetric space with a compatible complex structure is called Hermitian. The compact simply connected irreducible Hermitian symmetric spaces fall into 4 infinite families with 2 exceptional ones left over, and each has a non-compact dual. In addition the complex plane is also a Hermitian symmetric space; this gives the complete list of irreducible Hermitian symmetric spaces.
The four families are the types A III, B I and D I for, D III, and C I, and the two exceptional ones are types E III and E VII of complex dimensions 16 and 27.
R,C,H,O
In the symbols such as E6-26 for the exceptional groups, the exponent -26 is the signature of an invariant symmetric bilinear form that is negative definite on the maximal compact subgroup. It is equal to the dimension of the group minus twice the dimension of a maximal compact subgroup.
The fundamental group listed in the table below is the fundamental group of the simple group with trivial center. Other simple groups with the same Lie algebra correspond to subgroups of this fundamental group (modulo the action of the outer automorphism group).
Simple Lie groups are fully classified. The classification is usually stated in several steps, namely:
ak{g}
G
ak{g}
One can show that the fundamental group of any Lie group is a discrete commutative group. Given a (nontrivial) subgroup
K\subset\pi1(G)
G
\tilde{G}K
K
K\subset\pi1(G)
K=\pi1(G) | |
\tilde{G} |
G
\tilde{G}
ak{g}.
See main article: root system. Every simple complex Lie algebra has a unique real form whose corresponding centerless Lie group is compact. It turns out that the simply connected Lie group in these cases is also compact. Compact Lie groups have a particularly tractable representation theory because of the Peter–Weyl theorem. Just like simple complex Lie algebras, centerless compact Lie groups are classified by Dynkin diagrams (first classified by Wilhelm Killing and Élie Cartan).
For the infinite (A, B, C, D) series of Dynkin diagrams, a connected compact Lie group associated to each Dynkin diagram can be explicitly described as a matrix group, with the corresponding centerless compact Lie group described as the quotient by a subgroup of scalar matrices. For those of type A and C we can find explicit matrix representations of the corresponding simply connected Lie group as matrix groups.
Ar has as its associated simply connected compact group the special unitary group, SU(r + 1) and as its associated centerless compact group the projective unitary group PU(r + 1).
Br has as its associated centerless compact groups the odd special orthogonal groups, SO(2r + 1). This group is not simply connected however: its universal (double) cover is the spin group.
Cr has as its associated simply connected group the group of unitary symplectic matrices, Sp(r) and as its associated centerless group the Lie group PSp(r) = Sp(r)/ of projective unitary symplectic matrices. The symplectic groups have a double-cover by the metaplectic group.
Dr has as its associated compact group the even special orthogonal groups, SO(2r) and as its associated centerless compact group the projective special orthogonal group PSO(2r) = SO(2r)/. As with the B series, SO(2r) is not simply connected; its universal cover is again the spin group, but the latter again has a center (cf. its article).
The diagram D2 is two isolated nodes, the same as A1 ∪ A1, and this coincidence corresponds to the covering map homomorphism from SU(2) × SU(2) to SO(4) given by quaternion multiplication; see quaternions and spatial rotation. Thus SO(4) is not a simple group. Also, the diagram D3 is the same as A3, corresponding to a covering map homomorphism from SU(4) to SO(6).
In addition to the four families Ai, Bi, Ci, and Di above, there are five so-called exceptional Dynkin diagrams G2, F4, E6, E7, and E8; these exceptional Dynkin diagrams also have associated simply connected and centerless compact groups. However, the groups associated to the exceptional families are more difficult to describe than those associated to the infinite families, largely because their descriptions make use of exceptional objects. For example, the group associated to G2 is the automorphism group of the octonions, and the group associated to F4 is the automorphism group of a certain Albert algebra.
See also E.
See also: Abelian group.
The group
R
R
See also: Compact group.
width=100 | Dimension | Real rank | Fundamental group | Outer automorphism group | Other names | Remarks | |
---|---|---|---|---|---|---|---|
An compact | n(n + 2) | 0 | Cyclic, order | 1 if, 2 if . | projective special unitary group | A1 is the same as B1 and C1 | |
Bn compact | n(2n + 1) | 0 | 2 | 1 | special orthogonal group SO2n+1(R) | B1 is the same as A1 and C1. B2 is the same as C2. | |
Cn compact | n(2n + 1) | 0 | 2 | 1 | projective compact symplectic group PSp(n), PSp(2n), PUSp(n), PUSp(2n) | Hermitian. Complex structures of Hn. Copies of complex projective space in quaternionic projective space. | |
Dn compact | n(2n - 1) | 0 | Order 4 (cyclic when n is odd). | 2 if, S3 if | projective special orthogonal group PSO2n(R) | D3 is the same as A3, D2 is the same as A12, and D1 is abelian. | |
E6-78 compact | 78 | 0 | 3 | 2 | |||
E7-133 compact | 133 | 0 | 2 | 1 | |||
E8-248 compact | 248 | 0 | 1 | 1 | |||
F4-52 compact | 52 | 0 | 1 | 1 | |||
G2-14 compact | 14 | 0 | 1 | 1 | This is the automorphism group of the Cayley algebra. |
See also: Split Lie algebra.
width=100 | Dimension | Real rank | Maximal compact subgroup | Fundamental group | Outer automorphism group | Other names | Dimension of symmetric space | Compact symmetric space | Non-Compact symmetric space | Remarks | |
---|---|---|---|---|---|---|---|---|---|---|---|
An I (n ≥ 1) split | n(n + 2) | n | Dn/2 or B(n-1)/2 | Infinite cyclic if n = 1 2 if n ≥ 2 | 1 if n = 1 2 if n ≥ 2. | projective special linear group PSLn+1(R) | n(n + 3)/2 | Real structures on Cn+1 or set of RPn in CPn. Hermitian if, in which case it is the 2-sphere. | Euclidean structures on Rn+1. Hermitian if, when it is the upper half plane or unit complex disc. | ||
Bn I (n ≥ 2) split | n(2n + 1) | n | SO(n)SO(n+1) | Non-cyclic, order 4 | 1 | identity component of special orthogonal group SO(n,n+1) | n(n + 1) | B1 is the same as A1. | |||
Cn I (n ≥ 3) split | n(2n + 1) | n | An-1S1 | Infinite cyclic | 1 | projective symplectic group PSp2n(R), PSp(2n,R), PSp(2n), PSp(n,R), PSp(n) | n(n + 1) | Hermitian. Complex structures of Hn. Copies of complex projective space in quaternionic projective space. | Hermitian. Complex structures on R2n compatible with a symplectic form. Set of complex hyperbolic spaces in quaternionic hyperbolic space. Siegel upper half space. | C2 is the same as B2, and C1 is the same as B1 and A1. | |
Dn I (n ≥ 4) split | n(2n - 1) | n | SO(n)SO(n) | Order 4 if n odd, 8 if n even | 2 if, S3 if | identity component of projective special orthogonal group PSO(n,n) | n2 | D3 is the same as A3, D2 is the same as A12, and D1 is abelian. | |||
E66 I split | 78 | 6 | C4 | Order 2 | Order 2 | E I | 42 | ||||
E77 V split | 133 | 7 | A7 | Cyclic, order 4 | Order 2 | 70 | |||||
E88 VIII split | 248 | 8 | D8 | 2 | 1 | E VIII | 128 | @ E8 | |||
F44 I split | 52 | 4 | C3 × A1 | Order 2 | 1 | F I | 28 | Quaternionic projective planes in Cayley projective plane. | Hyperbolic quaternionic projective planes in hyperbolic Cayley projective plane. | ||
G22 I split | 14 | 2 | A1 × A1 | Order 2 | 1 | G I | 8 | Quaternionic subalgebras of the Cayley algebra. Quaternion-Kähler. | Non-division quaternionic subalgebras of the non-division Cayley algebra. Quaternion-Kähler. |
See also: Complex Lie group.
width=100 | Real dimension | Real rank | Maximal compact subgroup | Fundamental group | Outer automorphism group | Other names | Dimension of symmetric space | Compact symmetric space | Non-Compact symmetric space | |
---|---|---|---|---|---|---|---|---|---|---|
An (n ≥ 1) complex | 2n(n + 2) | n | An | Cyclic, order | 2 if, 4 (noncyclic) if . | projective complex special linear group PSLn+1(C) | n(n + 2) | Compact group An | Hermitian forms on Cn+1with fixed volume. | |
Bn (n ≥ 2) complex | 2n(2n + 1) | n | Bn | 2 | Order 2 (complex conjugation) | complex special orthogonal group SO2n+1(C) | n(2n + 1) | Compact group Bn | ||
Cn (n ≥ 3) complex | 2n(2n + 1) | n | Cn | 2 | Order 2 (complex conjugation) | projective complex symplectic group PSp2n(C) | n(2n + 1) | Compact group Cn | ||
Dn (n ≥ 4) complex | 2n(2n - 1) | n | Dn | Order 4 (cyclic when n is odd) | Noncyclic of order 4 for, or the product of a group of order 2 and the symmetric group S3 when . | projective complex special orthogonal group PSO2n(C) | n(2n - 1) | Compact group Dn | ||
E6 complex | 156 | 6 | E6 | 3 | Order 4 (non-cyclic) | 78 | Compact group E6 | |||
E7 complex | 266 | 7 | E7 | 2 | Order 2 (complex conjugation) | 133 | Compact group E7 | |||
E8 complex | 496 | 8 | E8 | 1 | Order 2 (complex conjugation) | 248 | Compact group E8 | |||
F4 complex | 104 | 4 | F4 | 1 | 2 | 52 | Compact group F4 | |||
G2 complex | 28 | 2 | G2 | 1 | Order 2 (complex conjugation) | 14 | Compact group G2 |
width=100 | Dimension | Real rank | Maximal compact subgroup | Fundamental group | Outer automorphism group | Other names | Dimension of symmetric space | Compact symmetric space | Non-Compact symmetric space | Remarks | |
---|---|---|---|---|---|---|---|---|---|---|---|
A2n-1 II (n ≥ 2) | (2n - 1)(2n + 1) | n - 1 | Cn | Order 2 | SLn(H), SU∗(2n) | (n - 1)(2n + 1) | Quaternionic structures on C2n compatible with the Hermitian structure | Copies of quaternionic hyperbolic space (of dimension) in complex hyperbolic space (of dimension). | |||
An III (n ≥ 1) p + q = n + 1 (1 ≤ p ≤ q) | n(n + 2) | p | Ap-1Aq-1S1 | SU(p,q), A III | 2pq | Hermitian. Grassmannian of p subspaces of Cp+q. If p or q is 2; quaternion-Kähler | Hermitian. Grassmannian of maximal positive definite subspaces of Cp,q. If p or q is 2, quaternion-Kähler | If p=q=1, split If ≤ 1, quasi-split | |||
Bn I (n > 1) p+q = 2n+1 | n(2n + 1) | min(p,q) | SO(p)SO(q) | SO(p,q) | pq | Grassmannian of Rps in Rp+q. If p or q is 1, Projective space If p or q is 2; Hermitian If p or q is 4, quaternion-Kähler | Grassmannian of positive definite Rps in Rp,q. If p or q is 1, Hyperbolic space If p or q is 2, Hermitian If p or q is 4, quaternion-Kähler | If ≤ 1, split. | |||
Cn II (n > 2) n = p+q (1 ≤ p ≤ q) | n(2n + 1) | min(p,q) | CpCq | Order 2 | 1 if p ≠ q, 2 if p = q. | Sp2p,2q(R) | 4pq | Grassmannian of Hps in Hp+q. If p or q is 1, quaternionic projective space in which case it is quaternion-Kähler. | Hps in Hp,q. If p or q is 1, quaternionic hyperbolic space in which case it is quaternion-Kähler. | ||
Dn I (n ≥ 4) p+q = 2n | n(2n - 1) | min(p,q) | SO(p)SO(q) | If p and q ≥ 3, order 8. | SO(p,q) | pq | Grassmannian of Rps in Rp+q. If p or q is 1, Projective space If p or q is 2 ; Hermitian If p or q is 4, quaternion-Kähler | Grassmannian of positive definite Rps in Rp,q. If p or q is 1, Hyperbolic Space If p or q is 2, Hermitian If p or q is 4, quaternion-Kähler | If, split If ≤ 2, quasi-split | ||
Dn III (n ≥ 4) | n(2n - 1) | ⌊n/2⌋ | An-1R1 | Infinite cyclic | Order 2 | SO*(2n) | n(n - 1) | Hermitian. Complex structures on R2n compatible with the Euclidean structure. | Hermitian. Quaternionic quadratic forms on R2n. | ||
E62 II (quasi-split) | 78 | 4 | A5A1 | Cyclic, order 6 | Order 2 | E II | 40 | Quaternion-Kähler. | Quaternion-Kähler. | Quasi-split but not split. | |
E6-14 III | 78 | 2 | D5S1 | Infinite cyclic | Trivial | E III | 32 | Hermitian. Rosenfeld elliptic projective plane over the complexified Cayley numbers. | Hermitian. Rosenfeld hyperbolic projective plane over the complexified Cayley numbers. | ||
E6-26 IV | 78 | 2 | F4 | Trivial | Order 2 | E IV | 26 | Set of Cayley projective planes in the projective plane over the complexified Cayley numbers. | Set of Cayley hyperbolic planes in the hyperbolic plane over the complexified Cayley numbers. | ||
E7-5 VI | 133 | 4 | D6A1 | Non-cyclic, order 4 | Trivial | E VI | 64 | Quaternion-Kähler. | Quaternion-Kähler. | ||
E7-25 VII | 133 | 3 | E6S1 | Infinite cyclic | Order 2 | E VII | 54 | Hermitian. | Hermitian. | ||
E8-24 IX | 248 | 4 | E7 × A1 | Order 2 | 1 | E IX | 112 | Quaternion-Kähler. | Quaternion-Kähler. | ||
F4-20 II | 52 | 1 | B4 (Spin9(R)) | Order 2 | 1 | F II | 16 | Cayley projective plane. Quaternion-Kähler. | Hyperbolic Cayley projective plane. Quaternion-Kähler. |
The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple.
Dim | Groups | Symmetric space | Compact dual | Rank | Dim | |
---|---|---|---|---|---|---|
1 | , S1 = U(1) = SO2 = Spin(2) | Abelian | Real line | 0 | 1 | |
3 | S3 = Sp(1) = SU(2)=Spin(3), SO3 = PSU(2) | Compact | ||||
3 | SL2 = Sp2, SO2,1 | Split, Hermitian, hyperbolic | Hyperbolic plane H2 | Sphere S2 | 1 | 2 |
6 | SL2 = Sp2, SO3,1, SO3 | Complex | Hyperbolic space H3 | Sphere S3 | 1 | 3 |
8 | SL3 | Split | Euclidean structures on R3 | Real structures on C3 | 2 | 5 |
8 | SU(3) | Compact | ||||
8 | SU(1,2) | Hermitian, quasi-split, quaternionic | Complex hyperbolic plane | Complex projective plane | 1 | 4 |
10 | Sp(2) = Spin(5), SO5 | Compact | ||||
10 | SO4,1, Sp2,2 | Hyperbolic, quaternionic | Hyperbolic space H4 | Sphere S4 | 1 | 4 |
10 | SO3,2, Sp4 | Split, Hermitian | Siegel upper half space | Complex structures on H2 | 2 | 6 |
14 | G2 | Compact | ||||
14 | G2 | Split, quaternionic | Non-division quaternionic subalgebras of non-division octonions | Quaternionic subalgebras of octonions | 2 | 8 |
15 | SU(4) = Spin(6), SO6 | Compact | ||||
15 | SL4, SO3,3 | Split | 3 in 3,3 | Grassmannian G(3,3) | 3 | 9 |
15 | SU(3,1) | Hermitian | Complex hyperbolic space | Complex projective space | 1 | 6 |
15 | SU(2,2), SO4,2 | Hermitian, quasi-split, quaternionic | 2 in 2,4 | Grassmannian G(2,4) | 2 | 8 |
15 | SL2, SO5,1 | Hyperbolic | Hyperbolic space H5 | Sphere S5 | 1 | 5 |
16 | SL3 | Complex | SU(3) | 2 | 8 | |
20 | SO5, Sp4 | Complex | Spin5 | 2 | 10 | |
21 | SO7 | Compact | ||||
21 | SO6,1 | Hyperbolic | Hyperbolic space H6 | Sphere S6 | ||
21 | SO5,2 | Hermitian | ||||
21 | SO4,3 | Split, quaternionic | ||||
21 | Sp(3) | Compact | ||||
21 | Sp6 | Split, hermitian | ||||
21 | Sp4,2 | Quaternionic | ||||
24 | SU(5) | Compact | ||||
24 | SL5 | Split | ||||
24 | SU4,1 | Hermitian | ||||
24 | SU3,2 | Hermitian, quaternionic | ||||
28 | SO8 | Compact | ||||
28 | SO7,1 | Hyperbolic | Hyperbolic space H7 | Sphere S7 | ||
28 | SO6,2 | Hermitian | ||||
28 | SO5,3 | Quasi-split | ||||
28 | SO4,4 | Split, quaternionic | ||||
28 | SO∗8 | Hermitian | ||||
28 | G2 | Complex | ||||
30 | SL4 | Complex |
A simply laced group is a Lie group whose Dynkin diagram only contain simple links, and therefore all the nonzero roots of the corresponding Lie algebra have the same length. The A, D and E series groups are all simply laced, but no group of type B, C, F, or G is simply laced.