Element (mathematics) explained

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (

A=\{1,2,3,4\}

), one could say that "3 is an element of ", expressed notationally as

3\inA

.

Sets

Writing

A=\{1,2,3,4\}

means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of, for example

\{1,2\}

, are subsets of .

Sets can themselves be elements. For example, consider the set

B=\{1,2,\{3,4\}\}

. The elements of are not 1, 2, 3, and 4. Rather, there are only three elements of, namely the numbers 1 and 2, and the set

\{3,4\}

.

The elements of a set can be anything. For example,

C=\{\color{Redred},\color{greengreen},\color{blueblue}\}

is the set whose elements are the colors, and .

In logical terms, .

Notation and terminology

The relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing

x\inA

means that "x is an element of A".[1] Equivalent expressions are "x is a member of A", "x belongs to A", "x is in A" and "x lies in A". The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A".[2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only.[3]

For the relation ∈, the converse relationT may be written

A\nix

meaning "A contains or includes x".

The negation of set membership is denoted by the symbol "∉". Writing

x\notinA

means that "x is not an element of A".

The symbol ∈ was first used by Giuseppe Peano, in his 1889 work Latin: [[Arithmetices principia, nova methodo exposita]]|italic=yes.[4] Here he wrote on page X:

Latin: Signum {{noitalic|∈

which means

The symbol ∈ means is. So is read as a is a certain b; …

The symbol itself is a stylized lowercase Greek letter epsilon ("ϵ"), the first letter of the word, which means "is".[4]

Examples

Using the sets defined above, namely A =, B = and C =, the following statements are true:

Cardinality of sets

See main article: Cardinality. The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set.[5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets. An example of an infinite set is the set of positive integers .

Formal relation

As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation

\in

is a subset of . The converse relation

\ni

is a subset of .

See also

Further reading

Notes and References

  1. Web site: Weisstein. Eric W.. Element. 2020-08-10. mathworld.wolfram.com. en.
  2. Book: Eric Schechter . Eric Schechter . Handbook of Analysis and Its Foundations . . 1997. 0-12-622760-8 . p. 12
  3. 24.243 Classical Set Theory (lecture) . George Boolos . George Boolos . February 4, 1992 . .
  4. Kennedy. H. C.. July 1973. 10.1305/ndjfl/1093891001. 3. Notre Dame Journal of Formal Logic. 0319684. 367–372. Duke University Press. What Russell learned from Peano. 14. free.
  5. Web site: Sets - Elements Brilliant Math & Science Wiki. 2020-08-10. brilliant.org. en-us.