In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual.
Suppose that
X
X\prime
\prime | |
X | |
b |
X
X
X\prime
\prime | |
X | |
b |
\prime\prime | |
X | |
b |
\prime | |
X | |
b. |
\prime\prime | |
X | |
\sigma |
X\prime
X\prime,
\sigma\left(X\prime,X\prime\right)
X\prime
W
X\prime
\sigma\left(X\prime,X\prime\right)
\prime\prime | |
X | |
\sigma |
W
\prime\prime | |
X | |
\sigma |
\sigma\left(X\prime,X\prime\right)
W
B
X
B
B\circ:=\left\{x\prime\inX\prime:\supb\left\langleb,x\prime\right\rangle\leq1\right\}.
X
W\subseteqX\prime
\sigma\left(X\prime,X\prime\right)
X\prime
B
\prime\prime | |
X | |
b |
\sigma\left(X\prime,X\prime\right)
W
W\subseteqX\prime
\sigma\left(X\prime,X\prime\right)
X\prime
B
X
W
B\circ\circ:=\left\{x\prime\prime\inX\prime\prime:
\sup | |
x\prime\inB\circ |
\left\langlex\prime,x\prime\prime\right\rangle\leq1\right\},
\left\langleX\prime,X\prime\prime\right\rangle
B\circ.
X
If in addition
X
X
All normed spaces and semi-reflexive spaces are distinguished spaces. LF spaces are distinguished spaces.
\prime | |
X | |
b |
X
X
Every locally convex distinguished space is an H-space.
X
Fréchet Montel spaces are distinguished spaces.