Reeb graph explained
A Reeb graph[1] (named after Georges Reeb by René Thom) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[2] According to [3] a similar concept was introduced by G.M. Adelson-Velskii and A.S. Kronrod and applied to analysis of Hilbert's thirteenth problem.[4] Proposed by G. Reeb as a tool in Morse theory,[5] Reeb graphs are the natural tool to study multivalued functional relationships between 2D scalar fields
,
, and
arising from the conditions
and
, because these relationships are single-valued when restricted to a region associated with an individual edge of the Reeb graph. This general principle was first used to study neutral surfaces in
oceanography.
[6] Reeb graphs have also found a wide variety of applications in computational geometry and computer graphics,[1] [7] including computer aided geometric design, topology-based shape matching,[8] [9] [10] topological data analysis,[11] topological simplification and cleaning, surface segmentation [12] and parametrization, efficient computation of level sets, neuroscience,[13] and geometrical thermodynamics.[3] In a special case of a function on a flat space (technically a simply connected domain), the Reeb graph forms a polytree and is also called a contour tree.[14]
Level set graphs help statistical inference related to estimating probability density functions and regression functions, and they can be used in cluster analysis and function optimization, among other things. [15]
Formal definition
Given a topological space X and a continuous function f: X → R, define an equivalence relation ~ on X where p~q whenever p and q belong to the same connected component of a single level set f-1(c) for some real c. The Reeb graph is the quotient space X /~ endowed with the quotient topology.
Generally, this quotient space does not have the structure of a finite graph. Even for a smooth function on a smooth manifold, the Reeb graph can be not one-dimensional and even non-Hausdorff space.[16]
In fact, the compactness of the manifold is crucial: The Reeb graph of a smooth function on a closed manifold is a one-dimensional Peano continuum that is homotopy equivalent to a finite graph.[17] In particular, the Reeb graph of a smooth function on a closed manifold with a finite number of critical values –which is the case of Morse functions, Morse–Bott functions or functions with isolated critical points – has the structure of a finite graph.[18]
Structure of the Reeb graph defined by a smooth function
Let
be a
smooth function on a
closed manifold
. The structure of the Reeb graph
depends both on the manifold
and on the class of the function
.
The first Betti number of the Reeb graph
Since for a smooth function on a closed manifold, the Reeb graph
is one-dimensional,
[19] we consider only its first
Betti number
; if
has the structure of a finite graph, then
is the
cycle rank of this graph. An upper bound holds
[20] [21]
,
where
is the co-rank of the
fundamental group of the manifold. If
, this bound is tight even in the class of simple
Morse functions.
[22] If
, for
smooth functions this bound is also tight, and in terms of the
genus
of the surface
the bound can be rewritten as
If
, for
Morse functions, there is a better bound for the cycle rank. Since for
Morse functions, the Reeb graph
is a finite graph,
[23] we denote by
the number of
vertices with
degree 2 in
. Then
[24] Leaf blocks of the Reeb graph
If
is a
Morse or Morse–Bott function on a
closed manifold, then its Reeb graph
has the structure or a finite graph.
[25] This finite graph has a specific structure, namely
is
Morse, then
has no
loops, and all its
leaf blocks are
complete graphs
, i.e., closed intervals
[26]
is Morse–Bott, then
has no
loops, and each its
leaf block contains a
vertex with
degree at most 2
[27] Description for Morse functions
If
is a
Morse function with distinct critical values, the Reeb graph can be described more explicitly. Its nodes, or vertices, correspond to the critical level sets
. The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set
as
passes through the critical value
. For example, if
is a minimum or a maximum of
, a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has
degree 1. If
is a
saddle point of index 1 and two components of
merge at
as
increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y". The same reasoning applies if the index of
is
and a component of
splits into two.
Notes and References
- Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien, 1991. Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11(5), pp.66-78
- Harish Doraiswamy, Vijay Natarajan, Efficient algorithms for computing Reeb graphs, Computational Geometry 42 (2009) 606–616
- Gorban. Alexander N.. 2013 . Thermodynamic Tree: The Space of Admissible Paths. SIAM Journal on Applied Dynamical Systems. 12. 1. 246–278. 10.1137/120866919. 1201.6315 . 5706376.
- G. M. Adelson-Velskii, A. S. Kronrod, About level sets of continuous functions with partial derivatives, Dokl. Akad. Nauk SSSR, 49 (4) (1945), pp. 239–241.
- G. Reeb, Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
- Stanley . Geoffrey J. . Neutral surface topology . Ocean Modelling . June 2019 . 138 . 88–106 . 10.1016/j.ocemod.2019.01.008. 1903.10091 . 2019OcMod.138...88S . 85502820 .
- Y. Shinagawa and T.L. Kunii, 1991. Constructing a Reeb graph automatically from cross sections. IEEE Computer Graphics and Applications, 11(6), pp.44-51.
- Pascucci . Valerio . Scorzelli . Giorgio . Bremer . Peer-Timo . Mascarenhas . Ajith . Robust On-line Computation of Reeb Graphs: Simplicity and Speed . ACM Transactions on Graphics . 26 . 3 . 58.1–58.9 . 2007. 10.1145/1276377.1276449 .
- M. Hilaga, Y. Shinagawa, T. Kohmura and T.L. Kunii, 2001, August. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 203-212). ACM.
- Tung . Tony . Schmitt . Francis . The Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes . International Journal of Shape Modeling . 11 . 1 . 91–120 . 2005. 10.1142/S0218654305000748 .
- Web site: the Topology ToolKit.
- Hajij. Mustafa . Rosen. Paul . An Efficient Data Retrieval Parallel Reeb Graph Algorithm . Algorithms . 13 . 258 . 2020. 10 . 10.3390/a13100258 . free . 1810.08310 .
- Shailja. S . Zhang. Angela . Manjunath. B. S. . A Computational Geometry Approach for Modeling Neuronal Fiber Pathways . Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Lecture Notes in Computer Science . Lecture Notes in Computer Science . 12908 . 2021 . 175–185 . 10.1007/978-3-030-87237-3_17 . 34729555 . 8560085 . 978-3-030-87236-6 .
- .
- Klemelä . Jussi . Level set tree methods . Wiley Interdisciplinary Reviews: Computational Statistics . 10 . 5 . e1436 . 2018. 10.1002/wics.1436 . 58864566 .
- I. Gelbukh, 2024. On the topology of the Reeb graph. Publicationes Mathematicae Debrecen, 104(3-4), pp.343-365
- I. Gelbukh, 2024. On the topology of the Reeb graph. Publicationes Mathematicae Debrecen, 104(3-4), pp.343-365
- O. Saeki, 2022. Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not., 11, pp.8740-8768
- I. Gelbukh, 2024. On the topology of the Reeb graph. Publicationes Mathematicae Debrecen, 104(3-4), pp.343-365
- I. Gelbukh, 2018. Loops in Reeb Graphs of n-Manifolds. Discrete & Computational Geometry, 59(4), pp.843-863
- I. Gelbukh, 2024. On the topology of the Reeb graph. Publicationes Mathematicae Debrecen, 104(3-4), pp.343-365
- L.P. Michalak, 2021. Combinatorial Modifications of Reeb Graphs and the Realization Problem. Discrete & Computational Geometry, 65, pp.1038-1060
- O. Saeki, 2022. Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not., 11, pp.8740-8768
- L.P. Michalak, 2018. Realization of a graph as the Reeb graph of a Morse function on a manifold. Topological Methods in Nonlinear Analysis, 52(2), pp.749-762
- O. Saeki, 2022. Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not., 11, pp.8740-8768
- I. Gelbukh, 2022. Criterion for a graph to admit a good orientation in terms of leaf blocks. Monatshefte für Mathematik, 198, pp.61-77
- I. Gelbukh, 2022. Realization of a Graph as the Reeb Graph of a Morse–Bott or a Round Function. Studia Scientiarum Mathematicarum Hungarica, 59(1), pp.1-16