In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by for abelian extensions and by for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension
L/K
Irr(G)
G=G(L/K)
Let
L/K
G
ak{d}L/K=\prod\chiak{f}(\chi)\chi(1),
where
ak{f}(\chi)
\chi
Let
L=
Q(\zeta | |
pn |
)/Q
G
(Z/pn) x
(p)
ak{f}(\chi)
ak{f}(p)(\chi)
G
\chi
1=\chi(1)
\chi
ak{p}
L\chi=Lker(\chi)/Q
np | |
(p) |
np
(np) | |
U | |
Qp |
\subseteq
N | |||||||
|
/Qp}(U
|
p>2
G(Lak{p}/Qp)=G(L/Qp)=(Z/pn) x
\varphi(pn)
U | |
Qp |
(k) | |
/U | |
Qp |
=(Z/pk) x
\chi
(Z/pi) x
ak{f}(p)(\chi)=pi
\varphi(pi)-\varphi(pi-1)
(Z/pi) x
ak{d}L/Q=
\varphi(pn)(n-1/(p-1)) | |
(p |
)
n | |
\sum | |
i=0 |
(\varphi(pi)-\varphi(pi-1))i=n\varphi(pn)-1-
n-2 | |
(p-1)\sum | |
i=0 |
pi=n\varphi(pn)-pn-1.