Washing machine explained

Washing machine should not be confused with Dishwasher.

A washing machine (laundry machine, clothes washer, washer, or simply wash) is a machine designed to launder clothing. The term is mostly applied to machines that use water. Other ways of doing laundry include dry cleaning (which uses alternative cleaning fluids and is performed by specialist businesses) and ultrasonic cleaning.

Modern-day home appliances use electric power to automatically clean clothes. The user adds laundry detergent, which is sold in liquid, powder, or dehydrated sheet form, to the wash water. The machines are also found in commercial laundromats where customers pay-per-use.

History

Washing by hand

Laundering by hand involves soaking, beating, scrubbing, and rinsing dirty textiles. Before indoor plumbing, it was necessary to carry all the water used for washing, boiling, and rinsing the laundry from a pump, well, or spring. Water for the laundry would be hand carried, heated on a fire for washing, then poured into a tub. This meant the amount of warm, soapy water was limited; it would be reused, first to wash the least soiled clothing, then to wash progressively dirtier laundry.

Removal of soap and water from the clothing after washing was a separate process. First, soap would be rinsed out with clear water. After rinsing, the soaking wet clothing would be formed into a roll and twisted by hand to extract water. The entire process often occupied an entire day of work, plus drying and ironing.

Early machines

An early example of washing by machine is the practice of fulling. In a fulling mill, the cloth was beaten with wooden hammers, known as fulling stocks or fulling hammers.

The first English patent under the category of washing machines was issued in 1691.[1] A drawing of an early washing machine appeared in the January 1752 issue of The Gentleman's Magazine, a British publication. Jacob Christian Schäffer's washing machine design was published in 1767 in Germany.[2] In 1782, Henry Sidgier was issued a British patent for a rotating drum washer, and in the 1790s, Edward Beetham sold numerous "patent washing mills" in England.[3]

One of the first innovations in washing machine technology was the use of enclosed containers or basins that had grooves, fingers, or paddles to help with the scrubbing and rubbing of the clothes. The person using the washer would use a stick to press and rotate the clothes along the textured sides of the basin or container, agitating the clothes to remove dirt and mud.[4] This crude agitator technology was hand-powered, but still more effective than actually hand-washing the clothes.

More advancements were made to washing machine technology in the form of the rotating drum design. These early design patents consisted of a drum washer that was hand-cranked to make the wooden drums rotate. While the technology was simple enough, it was a milestone in the history of washing machines, as it introduced the idea of "powered" washing drums. As metal drums started to replace the traditional wooden drums, it allowed for the drum to turn above an open fire or an enclosed fire chamber, raising the water temperature for more effective washes.

It was in the nineteenth century that steam power was first used in washing machine designs.[5]

In 1862, a patented "compound rotary washing machine, with rollers for wringing or mangling" by Richard Lansdale of Pendleton, Manchester, was shown at the 1862 London Exhibition.[6]

The first United States Patent, titled "Clothes Washing", was granted to Nathaniel Briggs of New Hampshire in 1797. Because of the Patent Office fire in 1836, no description of the device survives. The invention of the washing machine is also attributed to Watervliet Shaker Village, as a patent was issued to an Amos Larcom of Watervliet, New York, in 1829, but it is not certain that Larcom was a Shaker.[7] A device that combined a washing machine with a wringer mechanism appeared in 1843 when Canadian John E. Turnbull of Saint John, New Brunswick patented a "Clothes Washer With Wringer Rolls".[8] During the 1850s, Nicholas Bennett of the Mount Lebanon Shaker Society at New Lebanon, New York, invented a "wash mill", but in 1858 he assigned the patent to David Parker of the Canterbury Shaker Village, where it was registered as the "Improved Washing Machine".[9] [10]

Margaret Colvin improved the Triumph Rotary Washer,[11] which was exhibited in the Women's Pavilion at the Centennial International Exhibition of 1876 in Philadelphia.[12] At the same exhibition, the Shakers won a gold medal for their machine.[7]

Electric washing machines were advertised and discussed in newspapers as early as 1904.[13] Alva J. Fisher has been incorrectly credited with the invention of the electric washer. The US Patent Office shows at least one patent issued before Fisher's US patent number 966677[14] (e.g. Woodrow's US patent number 921195).[15] The first inventor of the electric washing machine remains unknown.

US electric washing machine sales reached 913,000 units in 1928. However, high unemployment rates in the Depression years reduced sales; by 1932 the number of units shipped was down to about 600,000.

An early laundromat in the United States opened in Fort Worth, Texas, in 1934.[16] It was run by Andrew Klein. Patrons used coin-in-the-slot facilities to rent washing machines. The term "laundromat" can be found in newspapers as early as 1884 and they were widespread during the Depression. England established public washrooms for laundry along with bathhouses throughout the nineteenth century.[17]

Washer design improved during the 1930s. The mechanism was now enclosed within a cabinet, and more attention was paid to electrical and mechanical safety. Spin dryers were introduced to replace the dangerous power mangle/wringers of the day.

By 1940, 60% of the 25,000,000 wired homes in the United States had an electric washing machine. Many of these machines featured a power wringer, although built-in spin dryers were not uncommon.

Automatic machines

Bendix Home Appliances, a subsidiary of Avco, introduced the first domestic automatic washing machine in 1937,[18] having applied for a patent in the same year.[19] Avco had licensed the name from Bendix Corporation, an otherwise unrelated company. In appearance and mechanical detail, this first machine was not unlike the front-loading automatic washers produced today.

Although it included many of today's basic features, the machine lacked any drum suspension and therefore had to be anchored to the floor to prevent "walking". Because of the components required, the machine was also expensive. For instance, the Bendix Home Laundry Service Manual (published November 1, 1946) shows that the drum speed change was facilitated by a 2-speed gearbox built to a heavy-duty standard (not unlike a car automatic gearbox, albeit smaller in size). The timer was also probably costly because miniature electric motors were expensive to produce.

Early automatic washing machines were usually connected to a water supply via temporary slip-on connectors to sink taps. Later, permanent connections to hot and cold water became the norm. Most modern front-loading European machines now only have a cold water connection (called "cold fill") and rely completely on internal electric heaters to raise the water temperature.[20]

Many of the early automatic machines had coin-in-the-slot facilities and were installed in the basement laundry rooms of apartment houses.

World War II and after

After the attack on Pearl Harbor, US domestic washer production was suspended for the duration of World War II in favor of manufacturing war material. However, numerous US appliance manufacturers were permitted to undertake the research and development of washers during the war years. Many took the opportunity to develop automatic machines, realizing that these represented the future of the industry.[21]

A large number of US manufacturers introduced competing automatic machines (mainly of the top-loading type) in the late 1940s and early 1950s. General Electric also introduced its first top-loading automatic model in 1947. This machine had many of the features that are incorporated into modern machines. Another early form of automatic washing machine manufactured by The Hoover Company used cartridges to program different wash cycles. This system, called the "Keymatic", used plastic cartridges with key-like slots and ridges around the edges. The cartridge was inserted into a slot on the machine and a mechanical reader operated the machine accordingly.

Several manufacturers produced semi-automatic machines, requiring the user to intervene at one or two points in the wash cycle. A common semi-automatic type (available from Hoover in the UK until at least the 1970s) included two tubs: one with an agitator or impeller for washing, plus another smaller tub for water extraction or centrifugal rinsing. These machines are still available in some countries such as India.Since their introduction, automatic washing machines have relied on electromechanical timers to sequence the washing and extraction process. Electromechanical timers consist of a series of cams on a common shaft driven by a small electric motor via a reduction gearbox. At the appropriate time in the wash cycle, each cam actuates a switch to engage or disengage a particular part of the machinery (for example, the drain pump motor). One of the first was invented in 1957 by Winston L. Shelton and Gresham N. Jennings, then both General Electric engineers. The device was granted US Patent 2870278.[22]

On the early electromechanical timers, the motor ran at a constant speed throughout the wash cycle, although the user could truncate parts of the program by manually advancing the control dial. However, by the 1950s demand for greater flexibility in the wash cycle led to the introduction of more sophisticated electrical timers to supplement the electromechanical timer. These newer timers enabled greater variation in functions such as the wash time. With this arrangement, the electric timer motor is periodically switched off to permit the clothing to soak and is only re-energized just before a micro-switch being engaged or disengaged for the next stage of the process. Fully electronic timers did not become widespread until decades later.

Despite the high cost of automatic washers, manufacturers had difficulty meeting the demand. Although there were material shortages during the Korean War, by 1953 automatic washing machine sales in the US exceeded those of wringer-type electric machines.

In the UK and most of Europe, electric washing machines did not become popular until the 1950s. This was largely because of the economic impact of World War II on the consumer market, which did not properly recover until the late 1950s. The early electric washers were single-tub wringer-type machines, as fully automatic washing machines were expensive.

During the 1960s, twin tub machines briefly became popular, helped by the low price of the Rolls Razor washers. Twin tub washing machines have two tubs, one larger than the other. The smaller tub in reality is a spinning drum for centrifugal drying while the larger tub only has an agitator in its bottom. Some machines could pump used wash water into a separate tub for temporary storage and to later pump it back for re-use. This was done not to save water or soap, but because heated water was expensive and time-consuming to produce. Automatic washing machines did not become dominant in the UK until well into the 1970s and by then were almost exclusively of the front-loader design.

In early automatic washing machines, any changes in impeller/drum speed were achieved by mechanical means or by a rheostat on the motor power supply. However, since the 1970s electronic control of motor speed has become a common feature on the more expensive models.

Cost-cutting and contemporary development

Over time manufacturers of automatic washers have gone to great lengths to reduce costs. For instance, expensive gearboxes are no longer required, since motor speed can be controlled electronically. Some models can be controlled via WiFi, and have angled/tilted drums to facilitate loading.[23] [24] [25]

Even on some expensive washers, the outer drum of front-loading machines is often (but not always) made of plastic (it can also be made out of metal, but this is expensive). This makes changing the main bearings difficult, as the plastic drum usually cannot be separated into two halves to enable the inner drum to be removed to gain access to the bearing.

Many residential front-loading washing machines typically have a 25kg (55lb) concrete block to dampen vibration. Alternatives include a plastic counterweight that can be filled with water after delivery,[26] reducing or controlling motor speeds, using hydraulic suspensions instead of spring suspensions, and having freely moving steel balls or liquid contained inside a ring mounted on both the top and bottom of the drum to counter the weight of the clothes and reduce vibration.[27] [28]

Most newer front-load machines now use a brushless DC (BLDC) motor directly connected to the basket (direct drive), where the stator assembly is attached to the rear of the outer plastic drum assembly, whilst the co-axial rotor is mounted on the shaft of the inner drum.[29] The direct drive motor eliminates the need for a pulley, belt, and belt tensioner.[30] [31] [32] [33] [34] It was first introduced to washing machines by Fisher and Paykel in 1991. Since then, other manufacturers have followed suit. Some washing machines with this type of motor now come with 10-year or 20-year warranties.[35] [36] The motor type used is an outrunner, due to its slim design with variable speed and high torque. The rotor is connected to the inner tub through its center. It can be made of metal or plastic. Some direct drive washers use induction motors instead of BLDC motors.[37]

Additional features

The modern washing machine market has seen several innovations and features, examples including:

In the early 1990s, upmarket machines incorporated microcontrollers for the timing process. These proved reliable and cost-effective, so many cheaper machines now also incorporate microcontrollers rather than electromechanical timers. Since the 2010s, some machines have had touchscreen displays, full-color or color displays, or touch-sensitive control panels.[78] [79]

In 1994, Staber Industries released the System 2000 washing machine, which is the only top-loading, horizontal-axis washer to be manufactured in the United States. The hexagonal tub spins like a front-loading machine, using only about one-third as much water as conventional top-loaders. This factor has led to an Energy Star rating for its high efficiency. This type of horizontal-axis washer and dryer (with a circular drum) is often used in Europe, where space is limited, as they can be as thin as 41cm (16inches) in width.[80]

In 1998, New Zealand-based company Fisher & Paykel introduced its SmartDrive washing machine line in the US. This washing machine uses a computer-controlled system to determine factors such as load size and adjusts the wash cycle to match. It also used a mixed system of washing, first with the "Eco-Active" wash, using a low level of recirculated water being sprayed on the load followed by a more traditional style wash. The SmartDrive also included a direct drive brushless DC electric motor, which simplified the bowl and agitator drive by eliminating the gearbox system.

In 2000, the British inventor James Dyson launched the CR01 ContraRotator, a type of washing machine with two cylinders rotating in opposite directions. It was claimed that this design reduced the wash time and produced cleaner washing than a single-cylinder machine. In 2004 the launch of the CR02, was the first washing machine to gain the British Allergy Foundation Seal of Approval. However, neither of the ContraRotator machines is now in production as they were expensive to manufacture. They were discontinued in 2005.[81] [82] It is patented under U.S. Patent US7750531B2, U.S. Patent US6311527, U.S. Patent US20010023513, U.S. Patent US6311527B1, U.S. Patent USD450164.[83]

In 2001, Whirlpool Corporation introduced the Calypso, the first vertical-axis high-efficiency washing machine to be top-loading. A washplate in the bottom of the tub nutated (a special wobbling motion) to bounce, shake, and toss the laundry. Simultaneously, water containing detergent was sprayed onto the laundry. The machine proved to be good at cleaning but gained a bad reputation due to frequent breakdowns and destruction of laundry. The washer was recalled with a class-action lawsuit[84] and pulled off the market.

In 2003, Maytag introduced their top-loading Neptune TL FAV6800A and TL FAV9800A washers. Instead of an agitator, the machine had two washplates, perpendicular to each other and at a 45-degree angle from the bottom of the tub. The machine would fill with only a small amount of water and the two wash plates would spin, tumbling the load within it, mimicking the action of a front-loading washer in a vertical-axis design.[85] [86] [87] [88] [89] [90]

In 2006, Sanyo introduced the "world-first" (as of February 2, 2006, with regards to home use drum-type washer/dryer) drum-type washing machine with "Air Wash" function (i.e.: using ozone as a disinfectant). It also reused and disinfected rinse water.[91] This washing machine uses only 50abbr=on1abbr=on of water in the recycle mode.

Approximately in 2012, eco-indicators were introduced, capable of predicting the energy demand based on the customer settings in terms of program and temperature.[92]

Features available in most modern consumer washing machines:

Additionally, some modern machines feature:

Around 2015 and 2017, some manufacturers[95] [96] [97] (namely Samsung and LG Electronics) offered washers and dryers that either have a top-loading washer and dryer built on top of a front-loading washer and dryer respectively (in Samsung washers and dryers) or offer users an optional top-loading washer that can be installed under a washer or dryer (for LG washers and dryers) Both manufacturers have also introduced front-loading washers allowing users to add items after a wash cycle has started,[98] [99] and Samsung has also introduced top-loading washers with a built-in sink[100] and a detergent dispenser that claims to leave no residue on the dispenser itself. In IFA 2017,[101] Samsung released the QuickDrive, a front-loading washer similar to the Dyson ContraRotator but instead of two counter-rotating drums, the QuickDrive has a single drum with a counter-rotating impeller mounted on the back of the drum. Samsung claims this technique reduces cycle times by half and energy consumption by 20%. The US has introduced standards for washing machines that improve their energy efficiency and reduce their water consumption.[102] [103]

Types

Top-loading

The top-loading, vertical-axis washer has been the dominant design in the United States and Canada. This design places the clothes in a vertically mounted perforated basket that is contained within a water-retaining tub, with a finned water-pumping agitator in the center of the bottom of the basket. Clothes are loaded through the top of the machine, which is usually but not always covered with a hinged door. The drum of a top loading washing machine can include a lint trap.[104]

Agitation

During the wash cycle, the outer tub is filled with water sufficient to fully immerse and suspend the clothing freely in the basket. The movement of the agitator pushes water outward between the paddles towards the edge of the tub. The water then moves outward, up the sides of the basket, towards the center, and then down towards the agitator to repeat the process, in a circulation pattern similar to the shape of a torus. The agitator direction is periodically reversed because continuous motion in one direction would just lead to the water spinning around the basket with the agitator rather than the water being pumped in the torus-shaped motion. Some washers supplement the water-pumping action of the agitator with a large rotating screw on the shaft above the agitator, to help move water downwards in the center of the basket. A washing machine can have an impeller, also called a wash plate, instead of an agitator, which serves the same purpose but does not have a vertical cylinder extending from its base.

Since the agitator and the drum are separate and distinct in a top-loading washing machine, the mechanism of a top-loader is inherently more complicated than a front-loading machine. Manufacturers have devised several ways to control the motion of the agitator during the wash and rinse separately from the high-speed rotation of the drum required for the spin cycle. While a top-loading washing machine could use a universal motor or DC brushless motor, it is conventional for top-loading washing machines to use more expensive, heavy, and potentially more electrically efficient and reliable induction motors.

An alternative to this oscillating agitator design is the impeller-type washtub pioneered by Hoover on its long-running Hoovermatic series of top-loading machines. Here, an impeller (trademarked by Hoover as a "Pulsator") mounted on the side of the tub spins in a constant direction and creates a fast-moving current of water in the tub which drags the clothes through the water along a toroidal path. This design was used in the Hoover 0307 washer. The impeller design has the advantage of mechanical simplicity – a single-speed motor with belt drive is all that is required to drive the Pulsator with no need for gearboxes or complex electrical controls, but has the disadvantage of lower load capacity in relation to tub size. Hoovermatic machines were made mostly in twin-tub format for the European market (where they competed with Hotpoint's Supermatic line which used the oscillating agitator design) until the early 1990s. Some industrial garment testing machines still use the Hoover wash action. Another alternative involves 'pulsating' the agitator, in other words having an agitator with a reciprocating motion along its vertical axis.[105] Some washing machines have agitators that move in an orbiting motion[106] [107] [108] or agitators that nutate at the bottom.[109] [110] [111] [112] [113] Special top loading washing machines designed for washing sneakers can incorporate bristles in their agitators.[114] Alternatively the inner tub itself can nutate inside the outer tub.[115] [116]

The many different ways manufacturers have solved the same problem over the years is a good example of many different ways to solve the same engineering problem with different goals, different manufacturing capabilities and expertise, and different patent encumbrances.

Reversible motor

In many current top-loading washers, if the motor spins in one direction, the gearbox drives the agitator; if the motor spins the other way, the gearbox locks the agitator and spins the basket and agitator together. Similarly, if the pump motor rotates one way it recirculates the sudsy water; in the other direction it pumps water from the machine during the spin cycle. Mechanically, this system is very simple.[37]

Mode-changing transmission

In some top-loaders, the motor runs only in one direction. During agitation, the transmission converts the rotation into the alternating motion driving the agitator. During the spin cycle, the timer turns on a solenoid which engages a clutch locking the motor's rotation to the wash basket, providing a spin cycle. General Electric's very popular line of Filter-Flo (seen to the right) used a variant of this design where the motor reversed only to pump water out of the machine. The same clutch which allows the heavy tub full of wet clothes to "slip" as it comes up to the motor's speed, is also allowed to "slip" during agitation to engage a Gentle Cycle for delicate clothes.

Whirlpool (Kenmore) created a popular design demonstrating the complex mechanisms which could be used to produce different motions from a single motor with the so-called "wig wag" mechanism, which was used for decades until modern controls rendered it obsolete. In the Whirlpool mechanism, a protruding moving piece oscillates in time with the agitation motion. Two solenoids are mounted to this protruding moving piece, with wires attaching them to the timer. During the cycle, the motor operates continuously, and the solenoids on the "wig wag" engage in agitation or spin. Despite the wires controlling the solenoids being subject to abrasion and broken connections due to their constant motion and the solenoids operating in a damp environment where corrosion could damage them, these machines were surprisingly reliable.

Reversible motor with mode-changing transmission

Some top-loaders, especially compact apartment-sized washers, use a hybrid mechanism. The motor reverses direction every few seconds, often with a pause between direction changes, to perform the agitation. The spin cycle is accomplished by engaging a clutch in the transmission. A separate motorized pump is generally used to drain this style of machine. These machines could easily be implemented with universal motors or more modern DC brushless motors, but older ones tend to use a capacitor-start induction motor with a pause between reversals of agitation.[117]

Front-loading

The front-loading or horizontal-axis clothes washer is the dominant design in Europe and in most parts of the world. In the United States and Canada, most "high-end" washing machines are of this type. In addition, most commercial and industrial clothes washers around the world are of the horizontal-axis design.

This layout mounts the inner drum and outer drum horizontally, and loading is through a door at the front of the machine. The door often but not always contains a transparent window. Agitation is supplied by the back-and-forth rotation of the cylinder and by gravity. The clothes are lifted by paddles on the inside wall of the drum and then dropped. This motion flexes the weave of the fabric and forces water and detergent solution through the clothes load. Because the wash action does not require the clothing to be freely suspended in water, only enough water is needed to moisten the fabric. Because less water is required, front-loaders typically use less soap, and the repeated dropping and folding action of the tumbling can easily produce large amounts of foam or suds.

Front-loaders control water usage through the surface tension of water, and the capillary wicking action this creates in the fabric weave. A front-loader washer always fills to the same low water level, but a large pile of dry clothing standing in water will soak up the moisture, causing the water level to drop. The washer then refills to maintain the original water level. Because it takes time for this water absorption to occur with a motionless pile of fabric, nearly all front-loaders begin the washing process by slowly tumbling the clothing under the stream of water entering and filling the drum, to rapidly saturate the clothes with water.

Compared to top-loading washers, clothing can be packed more tightly in a front loader, up to the full drum volume if using a cotton wash cycle. This is because wet cloth usually fits into a smaller space than dry cloth, and front-loaders can self-regulate the water needed to achieve correct washing and rinsing. However, extreme overloading of front-loading washers pushes fabrics towards the small gap between the loading door and the front of the wash basket, potentially resulting in fabrics lost between the basket and outer tub, and in severe cases, tearing of clothing and jamming the motion of the basket.

Mechanical aspects

Front-loading washers are mechanically simple compared to top-loaders, with the main motor (a universal motor or variable-frequency drive motor) normally being connected to the drum via a grooved pulley belt and large pulley wheel without the need for a gearbox, clutch or crank. The action of a front-loading washing machine is better suited to a motor capable of reversing direction with every reversal of the wash drum; a universal motor is noisier, less efficient, and does not last as long, but is better suited to the task of reversing direction every few seconds. Some models, such as those by LG, use a motor directly connected to the drum, eliminating the need for a belt and pulley.

However, front-load washers suffer from their own technical challenges due to the horizontal disposition of the drum. A top-loading washer keeps water inside the tub merely through the force of gravity pulling down on the water, while a front-loader must tightly seal the door with a gasket to prevent water dripping onto the floor during the wash cycle. This access door is locked shut with an interlocking device during the entire wash cycle, since opening the door with the machine in use could result in water gushing onto the floor. If this interlock is broken for any reason, such a machine stops operation, even if this failure happens mid-cycle. In most machines, the interlock is usually doubly redundant to prevent either opening with the drum full of water or being opened during the spin cycle. For front-loaders without viewing windows on the door, it is possible to accidentally pinch the fabric between the door and the drum, resulting in tearing and damage to the pinched clothing during tumbling and spinning.

Nearly all front-loader washers for the consumer market also use a folded flexible bellows assembly around the door opening to keep clothing contained inside the drum during the tumbling wash cycle. If this bellows assembly were not used, small articles of clothing such as socks could slip out of the wash drum near the door and fall down the narrow slot between the outer and inner drums, plugging the drain and possibly jamming rotation of the inner drum. Retrieving lost items from between the outer drum and inner drum can require complete disassembly of the front of the washer and pulling out the entire inner wash drum. Commercial and industrial front-loaders used by businesses (described below) usually do not use the bellows, but instead require all small objects to be placed in a mesh bag to prevent loss near the drum opening.

Variant and hybrid designs

There are many variations of the two general designs. Top-loading machines in Asia use impellers instead of agitators. Impellers are similar to agitators except that they do not have the center post extending up in the middle of the washtub basket.

Horizontal-axis top-loader

Some machines which load from the top are otherwise much more similar to front-loading horizontal-axis drum machines. They have a drum rotating around a horizontal axis, as a front-loader, but there is no front door; instead, there is a liftable lid that provides access to the drum, which has a hatch that can be latched shut. Clothes are loaded, the hatch and lid are closed, and the machine operates and spins just like a front loader. These machines are narrower but usually taller than front-loaders, usually have a lower capacity, and are intended for use where only a narrow space is available, as is sometimes the case in Europe. They have incidental advantages: they can be loaded while standing (but force the user to bend down instead of crouching down or sitting to unload); they do not require a perishable rubber bellows seal; and instead of the drum having a single bearing on one side, it has a pair of symmetrical bearings, one on each side, avoiding asymmetrical bearing loading and potentially increasing life.

Combo washer dryer

There are also combo washer dryer machines that combine washing cycles and a full drying cycle in the same drum, eliminating the need to transfer wet clothes from a washer to a dryer machine. In principle, these machines are convenient for overnight cleaning (the combined cycle is considerably longer), but the effective capacity for cleaning larger batches of laundry is drastically reduced. The drying process tends to use much more energy than using two separate devices, because a combo washer dryer not only must dry the clothing but also needs to dry out the wash chamber itself.

These machines are used more where space is at a premium, such as areas of Europe and Japan because they can be fit into small spaces, perform both washing and drying, and many can be operated without dedicated utility connections. In these machines, the washer and dryer functions often have different capacities, with the dryer usually having the lowest capacity.

These combo machines should not be confused with a dryer on top of a washer installation, or with a laundry center, which is a one-piece appliance offering a compromise between a washer-dryer combo and a full washer to the side of the dryer installation or a dryer on top of a washer installation. Laundry centers usually have the dryer on top of the washer, with the controls for both machines being on a single control panel. Often, the controls are simpler than the controls on a washer-dryer combo or a dedicated washer and dryer. Some implementations are patented under US Patent US6343492B1 and US Patent US 6363756B1.

Comparison

True front-loading machines, top-loading machines with horizontal-axis drums, and true top-loading vertical-axis machines can be compared on several aspects:

Wash cycles

The earliest washing machines simply carried out a washing action when loaded with clothes and soap, filled with hot water, and started. Over time machines became more and more automated, first with complex electromechanical controllers, then fully electronic controllers; users put clothes into the machine, select a suitable program via a switch, start the machine, and come back to remove clean and slightly damp clothes at the end of the cycle. The controller starts and stops many different processes including pumps and valves to fill and empty the drum with water, heating, and rotating at different speeds, with different combinations of settings for different fabrics.

Longer wash cycles can allow greater water and energy efficiency (with less water to heat up). For a 3.5kg (07.7lb) load, from 2011 to 2021, the average Australian washing machine cycle (including rinsing and spinning) has lengthened from 99 to 144 minutes for front-loaders, and 55 to 59 minutes for top-loaders.[122]

Washing

Many front-loading machines have internal electrical heating elements to heat the wash water, to near boiling if desired. The rate of the chemical cleaning action of the detergent and other laundry chemicals increases greatly with temperature, by the Arrhenius equation. Washing machines with internal heaters can use special detergents formulated to release different chemical ingredients at different temperatures, allowing different types of stains and soils to be cleaned from the clothes as the wash water is heated by the electrical heater.

However, higher-temperature washing uses more energy, and many fabrics and elastics are damaged at higher temperatures. Temperatures exceeding have the undesirable effect of deactivating the enzymes when using biological detergent.

Many machines are cold-fill, connected to cold water only, which they internally heat to operating temperature. Where water can be heated more cheaply or with less carbon dioxide emission than by electricity, a cold-fill operation is inefficient.

Front-loaders need to use low-sudsing detergents because the tumbling action of the drum entrains air into the clothes load, which can cause excessive foamy suds and overflows. However, due to the efficient use of water and detergent, the suds issue with front-loaders can be controlled by simply using less detergent, without lessening the cleaning action.

Rinsing

Washing machines perform several rinses after the main wash to remove most of the detergent. Modern washing machines use less hot water due to environmental concerns; however, this has led to the problem of poor rinsing on many washing machines on the market,[123] which can be a problem to people who are sensitive to detergents. The Allergy UK website suggests re-running the rinse cycle, or rerunning the entire wash cycle without detergent.[124]

In response to complaints, many washing machines allow the user to select additional rinse cycles, at the expense of higher water usage and longer cycle time. Bosch, for example, in its allergy wash program, incorporates an additional three-minute rinse cycle with water of at least to rinse off detergent residues and any allergens.[125]

Spin

Front-loading machines spin in multiple stages of their cycle: after main wash, after individual rinses, and the final high-speed spin. Some of those spins may be absent depending on the particular cycle.

Higher spin speeds, along with larger tub diameters, remove more water, leading to faster drying. On the other hand, the need for ironing can be reduced by not using the spin cycle in the washing machine.

If a heated clothes dryer is used after the wash and spin, energy use is reduced if more water has been removed from clothes. However, faster spinning can crease clothes more. Also, mechanical wear on bearings increases rapidly with rotational speed, reducing life. Early machines would spin at 300 rpm and, because of lack of any mechanical suspension, would often shake and vibrate.

In 1976, most front-loading washing machines spun at around 700 RPM, or less. Today, most machines spin at 1000–1600 RPM. Most machines have variable speeds, ranging 300–2000 RPM depending on the machine.

Separate spin-driers, without washing functionality, are available for specialized applications. For example, a small high-speed centrifuge machine may be provided in locker rooms of communal swimming pools to allow wet swimsuits to be substantially dried to a slightly damp condition after daily use.

Washing machines often incorporate balance rings filled with a liquid such as a calcium chloride salt water solution,[126] that are designed to balance the inner drum of the washer during spin cycles.[127] [128] The balance ring may be filled with oil and contain balls on races, somewhat similarly to a ball bearing, to achieve the same effect.[129] [130] The Bendix Economat used a flexible rubber inner tub that would squeeze the clothes towards the agitator located in the center of the inner tub in order to remove water from the clothes, instead of spinning the inner tub. This was performed by exerting a vacuum on the inner tub.[131] [132]

Maintenance wash

Many home washing machines use a plastic, rather than metal, outer shell to contain the wash water; residue can build up on the plastic tub over time. Some manufacturers advise users to perform a regular maintenance or "freshening" wash to clean the inside of the washing machine of any mold, bacteria, encrusted detergent, and unspecified dirt more effectively than with a normal wash.

A maintenance wash is performed without any laundry, on the hottest wash program,[133] adding substances such as white vinegar, 100 grams of citric acid, a detergent with bleaching properties, or a proprietary washing machine cleaner. The first injection of water goes into the sump[134] so the machine can be allowed to fill for about 30 seconds before adding cleaning substances.

Installation and flood prevention

Flexible rubber hoses are typically used to connect from a building water supply to a washing machine. These hoses are often exposed to full water pressure on a continuing basis and can deteriorate over time, developing bulges or weak spots that eventually cause leaks or catastrophic bursting and flooding. Since the hoses are often hidden from view, they may be difficult to inspect and easily forgotten until a problem occurs. If a hose burst occurs when nobody is present to notice the problem, a huge volume of water can be delivered over a short time, causing extensive interior flooding damage or even structural damage. It has been estimated that a burst supply hose can deliver two tons of water in an hour.[135]

To reduce these risks, it is a common recommendation to use flexible hoses which have been jacketed with a braided stainless steel mesh. This jacketing cannot prevent leaks from developing, but it can slow the development of large bulges or "aneurysms" which can burst suddenly without warning. However, even braided metal jackets often cannot withstand the enormous pressures generated by water freezing within an enclosed volume.

An additional precaution is to install a washing machine inside a shallow metal or plastic pan, which can collect minor leakage and divert the water to a nearby drain, or to the outside of a building. Drain pans can also divert water released by other problems, such as a jammed solenoid valve in a washing machine. A serious limitation of drain pans is that they typically cannot handle the large volumes of pressurized water released by a burst supply hose, so a drain pan is no substitute for hose burst precautions. In the absence of a drain, a pan may still be useful to confine leakage temporarily, while a local or remote water alarm is triggered.

In addition or instead of an alarm, a water detector may signal the main water shutoff valve to the building to be automatically closed to prevent flooding.[136]

A very effective precaution is to install a shutoff or isolation valve which stops any water from being supplied, except when a washing machine is actually operating. The simplest method is to manually open and close the hot and cold water shutoff valves (traditionally globe valves) behind the washing machine, each time it is used. This method relies on the washing machine user conscientiously operating the two valves each time laundry is done, in spite of the awkward location of the valves and the tedious process of turning the handles through multiple rotations.

An improvement over the traditional setup is to install a specialized laundry shutoff valve.[137] Typically, it consists of two ball valves connected to a single handle, so they can be operated by a horizontal or vertical lever moved by 90 degrees. This makes the operation of the valves a quick procedure, but the washing machine user must still remember to turn off the water, even though the failure to do this produces no immediately obvious problems.

To close this risk exposure, some shutoff valves have a spring-energized mechanical timer which is started when the user pushes a lever to open the valves. After a preset time of several hours elapses, the spring-powered mechanism automatically closes the valve without further user intervention.[135] A variant of this setup requires the user to press a button to open the valves for an electrically-timed interval.

Other automatic valve operating mechanisms electronically detect when a washing machine draws electrical power as it starts, and then open the water supply valves. Typically, the power plug for the washing machine is connected to a special detector receptacle or cable, to allowing monitoring of the power draw.[137]

Although pressurized water supply leaks can cause the most damage in the least amount of time, water drainage can also cause problems if not handled properly. Washing machine drainage hoses should be secured properly to prevent accidental dislodgement, and drains should be inspected and cleared periodically to prevent buildup of laundry lint, mold, and other deposits.[138]

Efficiency and standards

Capacity and cost are both considerations when purchasing a washing machine. All else being equal, a machine of higher capacity will cost more to buy, but will be more convenient if large amounts of laundry must be cleaned. Fewer runs of a machine of larger capacity may have lower running costs and better energy and water efficiency than frequent use of a smaller machine, particularly for large families. However, running a large machine with small loads is typically inefficient and wasteful, unless the machine has been designed to handle such situations.

For many years energy and water efficiency were not regulated, and little attention was paid to them. From the last part of the 20th century, increasing attention was paid to efficiency, with regulations enforcing some standards. Efficiency became a selling point, both to save on running costs and to reduce carbon dioxide emissions associated with energy generation, and waste of water.

As energy and water efficiency became regulated, they became a selling point for buyers; however, the effectiveness of rinsing was not specified, and it did not directly attract the attention of buyers. Therefore, manufacturers tended to reduce the degree of rinsing after washing, saving water and electrical energy. This had the side-effect of leaving more detergent residue in clothes, which can affect people with allergies or sensitivity.[123] In response to complaints, some manufacturers have now designed their machines with a user-selectable option for additional rinsing.

Europe

Washing machines display an EU Energy Label with grades for energy efficiency, washing performance, and spin efficiency. Grades for energy efficiency run from A+++ to D (best to worst), providing a simple method for judging running costs. Washing performance and spin efficiency are graded in the range A to G. However, all machines for sale must have washing performance A, so that manufacturers cannot compromise washing performance in order to improve the energy efficiency. This labeling has had the desired effect of driving customers toward more efficient washing machines and away from less efficient ones.

According to regulations, each washing machine is equipped with a wastewater filter. This ensures that no hazardous chemical substances are disposed of improperly through the sewage system; on the other hand, it also ensures that if there is backflow in the plumbing system, sewage cannot enter the washing machine.[139]

United States

Top-loading and front-loading clothes washers are covered by a single national standard regulating energy consumption. The old federal standards applicable before January 2011 did not restrict water consumption; there was no limit on how much unheated rinse water could be used.[140] Energy consumption for clothes washers is quantified using the energy factor.

After new mandatory federal standards were introduced, many US washers were manufactured to be more energy- and water-efficient than required by the federal standard, or even than required by the more-stringent Energy Star standard.[141] Manufacturers were further motivated to exceed mandatory standards by a program of direct-to-manufacturer tax credits.[142]

In North America, the Energy Star program compares and lists energy-efficient clothes washers. Certified Energy Star units can be compared by their Modified Energy Factor (MEF) and Water Factor (WF) coefficients. The MEF figure of merit states how many cubic feet (about 28.3 liters) of clothes are washed per kWh (kilowatt hour). The coefficient is influenced by factors including the configuration of the washer (top-loading, front-loading), its spin speed, and the temperatures and the amount of water used in the rinse and wash cycles.

Energy Star residential clothes washers must have an MEF of at least 2.0 (the higher the better); the best machines may reach 3.5. Energy Star washers must also have a WF of less than 6.0 (the lower the better).[143]

Commercial use

A commercial washing machine is intended for more intensive use than a consumer washing machine.[144] Durability and functionality is more important than style; most commercial washers are bulky and heavy, often with more expensive stainless steel construction to minimize corrosion in a constantly-moist environment. They are built with large easy-to-open service covers, and washers are designed not to require access from the underside for service. Commercial washers are often installed in long rows, with a wide access passageway behind all the machines to allow maintenance without moving the heavy machinery.

Laundromat machines

Many commercial washers are built for use by the general public, and are installed in publicly accessible laundromats or laundrettes. Originally, they were operated by coins (similar to older vending machines), but today they are activated by money accepting devices or card readers. The features of a commercial laundromat washer are usually more limited than those of a consumer washer, usually offering just two or three basic wash programs and an option to choose wash cycle temperatures. Some more-advanced models allow extra-cost options such as an additional wash or rinse cycle, at the choice of the user.

The typical front-loading commercial washing machine also differs from consumer models in its discharge of spent wash and rinse water. While the consumer models pump used washer water out, allowing the waste drainage pipe to be located above the floor level, front-loading commercial machines generally use only gravity to expel used water. A drain valve at the bottom rear of the machine opens at the appointed time during the cycle, allowing water to flow out. This requires a special drainage trough equipped with a filter and drain, and routed behind each machine. The trough is usually part of a cement platform built for the purpose of raising the machines to a convenient height, and can be seen behind washers at most laundromats.

Most laundromat machines are horizontal-axis front-loading models, because of their lower operating costs (notably, lower consumption of expensive hot water).

Industrial washers

By contrast, commercial washers for internal business operations (which are often referred to as "washer/extractor" machines) may include features absent from domestic machines. Many commercial washers offer an option for automatic injection of five or more different chemical types, so that the operator does not have to deal with constantly measuring out soap products and fabric softeners for each load by hand. Instead, a precise metering system draws the detergents and wash additives directly from large liquid-chemical storage barrels, and injects them as needed into the various wash and rinse cycles. Some computer-controlled commercial washers offer the operator detailed control over the various wash and rinse cycles, allowing the operator to program custom washing cycles.

Most large-scale industrial washers are horizontal-axis machines, but they may have front-, side-, or top-load doors. Some industrial clothes washers can batch-process up to of textiles at once, and can be used for extremely machine-abusive washing tasks such as stone washing or fabric bleaching and dyeing.

An industrial washer can be mounted on heavy-duty shock absorbers and attached to a concrete floor, so that it can extract water from even the most severely out-of-balance and heavy wash loads. Noise and vibration are not as unacceptable as in a domestic machine. The machine may be mounted on hydraulic cylinders, permitting the entire washer to be lifted and tilted so that fabrics can be automatically dumped from the wash drum onto a conveyor belt once the cycle is complete. One special type of continuous-processing washer is known as the tunnel washer. This specialized high-capacity machine does not have a drum where everything being washed undergoes distinct wash and rinse cycles. Instead, the laundry progresses slowly and continuously through a long, large-diameter horizontal-axis rotating tube in the manner of an assembly line, with different processes at different positions.[145]

Social impact

The historically laborious process of washing clothes (a task which often consumed a whole day) was at times described as "women's work". The spread of the washing machine has been seen to be a force behind the improvement of women's position in society.

Before the advent of the washing machine, laundry was done first at watercourses, and later in public wash-houses known as lavoirs. Camille Paglia and others argue that the washing machine led to a type of social isolation of women,[146] as a previously communal activity became a solitary one.

In 2009 the Italian newspaper L'Osservatore Romano reprinted a Playboy magazine article on International Women's Day arguing that the washing machine had done more for the liberation of women than the contraceptive pill and abortion rights.[147] A study from Université de Montréal, Canada presented a similar point of view, and added refrigerators.[148] The following year, Swedish statistician Hans Rosling suggested that the positive effect the washing machine had on the liberation of women makes it "the greatest invention of the industrial revolution".[149] It has been argued that washing machines are an example of labor-saving technology which does not decrease employment, because households can internalize the gains of the innovation.[150]

Historian Frances Finnegan credits the rise of domestic laundry technology in helping to undercut the economic viability of the Magdalene asylums in Ireland (later revealed to be inhumanly abusive prisons for women), by supplanting their laundry businesses and prompting the eventual closure of the institutions as a whole.[151] Irish feminist Mary Frances McDonald has described washing machines as the single most life-changing invention for women.[152]

In India, dhobis, a caste group specialized in washing clothes, are slowly adapting to modern technology, but even with access to washing machines, many still handwash garments as well.[153] Since most modern homes are equipped with a washing machine, many Indians have dispensed with the services of the dhobiwallahs.[154]

Environmental impact

Due to the increasing cost of repairs relative to the price of a washing machine, there has been a major increase in the yearly number of defective washing machines being discarded, to the detriment of the environment. The cost of repair and the expected life of a machine may make the purchase of a new machine seem like the better option.[155]

Different washing machine models vary widely in their use of water, detergent, and energy. The energy required for heating is large compared to that used by lighting, electric motors, and electronic devices. Because of their use of hot water, washing machines are among the largest overall consumers of energy in a typical modern home.[156]

Washing machines worldwide release around 62 million tonnes of carbon dioxide equivalent in a year. However, modern improvements have been made aiming to lower these emission numbers, and it depends on the user's choice to fully determine their environmental impact.[157]

See also

External links

Notes and References

  1. Mothers and Daughters of Invention: Notes for a Revised History of Technology, Autumn Stanley, Rutgers University Press, 1995, p. 301.
  2. Web site: Deutsches Museum: Schäffer . Deutsches-museum.de . 2011-12-12.
  3. Web site: History of Washing Machines up to 1800 . Oldandinteresting.com . 2011-04-14 . 2012-06-01.
  4. Encyclopedia: Washing Machine – MSN Encarta . https://web.archive.org/web/20090821231224/http://encarta.msn.com/encyclopedia_761590288/Washing_Machine.html . 2009-08-21 . dead.
  5. Web site: Washing Machine Facts, information, pictures | Encyclopedia.com articles about Washing Machine . Encyclopedia.com . 2012-06-01.
  6. Web site: 1862 London Exhibition: Catalogue: Class VIII.: Richard Lansdale . GracesGuide.co.uk . 2010-06-19.
  7. Book: Work and Worship Among the Shakers: Their Craftsmanship and Economic Order. Andrews. Edward Deming. Andrews. Faith. 1974-01-01. Courier Corporation. 9780486243825. 157. en.
  8. Mario Theriault, Great Maritime Inventions 1833–1950, Goose Lane, 2001, p. 28.
  9. Web site: Shaker Museum . 2016-07-20 . The Shaker Improved Washing Machine . 2016-10-10 . Shaker Museum Mount Lebanon.
  10. .
  11. .
  12. Book: Women, Aging, and Ageism – Evelyn R Rosenthal – Google Books . 2012-10-14. 9780866569842 . Rosenthal . Evelyn R. . 1990 . Haworth Press .
  13. "Electric Washing Machine the Latest. Housewives can do Washing in one-third the Time", Des Moines Daily Capitol, November 12, 1904, p. 13.
  14. .
  15. .
  16. David John Cole, Eve Browning, Fred E. H. Schroeder, Encyclopedia of Modern Everyday Inventions, Greenwood 2003.
  17. New York Times, April 13, 1884; New London Journal, July 22, 1917.
  18. Web site: 13 February 2016. 1950-04-24. LIFE.
  19. .
  20. Web site: Test & Vergleich . March 17, 2016 . https://web.archive.org/web/20160305225117/http://www.trocknerland.com/waermepumpentrockner/ . March 5, 2016 . live .
  21. Web site: A. S. Campbell Company . 1942-12-28 . Your Next Washing Machine (or is it?) . 13 September 2012 . 88 . Time.
  22. Web site: Timing mechanism for conducting a selected one of a plurality of sequences of operation . 2 November 2017.
  23. Web site: ななめドラム洗濯乾燥機 NA-VG2400L/R | 商品一覧 | 洗濯機/衣類乾燥機 | Panasonic. panasonic.jp.
  24. Web site: iF Design - National NA-V81. ifdesign.com.
  25. Web site: Drum type washing machine.
  26. Web site: 2017-08-04 . Concrete-free washing machines are lighter to transport, just as good in a spin . 2023-12-27 . New Atlas . en-US.
  27. Web site: Home Appliances – Washer – Front Loading Drum Type – BD-W90XWV . www.hitachi-hk.com.hk.
  28. Web site: Hitachi Modern Sales Thailand. hmsi-hitachi.co.th.
  29. US. 7750531. Direct drive motor in washing machine. 2005-11-08. .
  30. Web site: Intermediate bearing drives for clothes washing machines.
  31. Web site: Methods of and/or apparatus for braking an electronically commutated motor and/or laundry machines incorporating the same.
  32. Web site: Method of manufacturing a motor element of an electric motor.
  33. Web site: Improvements in or relating to drives for clothes washing machines.
  34. Web site: Drives for clothes washing machines.
  35. News: 2020-10-26. The Best Washing Machines (and Their Matching Dryers). en-US. The New York Times. 2020-12-20. 0362-4331.
  36. Web site: LG Announces 20-Year Warranties to Take Lead in European Home Electronics Market. Cho. Jin-young. September 1, 2016. Businesskorea.
  37. Web site: Whirlpool - Washer - Direct Drive Repair Manual . www.uncleharrywizard.com.
  38. in LG washers
  39. Web site: WV9900 6.0 cu. ft. FlexWash™ Washer Washers – WV60M9900AV/A5 . 2018-02-19 . Samsung US . en.
  40. Web site: LG WM9500HKA: LG SIGNATURE 5.8 cu. ft. Mega Capacity Washer LG USA. www.lg.com. en. 2018-02-19.
  41. Web site: ドラム式洗濯乾燥機.
  42. Web site: Method of operating a washing machine and washing machine.
  43. Web site: This washing machine looks like nothing else out there.. Reviewed.
  44. Web site: What is a Diamond Drum? Samsung Support Australia. Samsung au. en-AU. 2018-02-19.
  45. Web site: The patented Miele honeycomb drum - Front Loaders. www.mieleusa.com. 2018-02-19.
  46. Web site: Hotpoint Aquarius WMAQF 721P Washing Machine – White – Hotpoint UK . 2018-02-19 . www.hotpoint.co.uk . en-uk.
  47. Web site: What is Ceramic Heater in Front load washing machines. www.samsung.com. en. 2018-02-19.
  48. Web site: LG LUWM101HWA: LG SIGNATURE SmartThinQ Washer/Dryer Combo LG USA. www.lg.com. en. 2018-02-19.
  49. News: Lavadora Consul 11 kg Facilite com Estoque Fácil Branca. Consul. 2018-02-19. pt-BR.
  50. Web site: ななめドラム洗濯乾燥機 NA-VX9800L/R 洗濯機/衣類乾燥機 Panasonic. panasonic.jp. ja. 2018-02-19.
  51. Web site: LG TWINWash™ Washing Machine with True Steam™ and Turbowash™ technology LG UK. www.lg.com. en. 2018-02-19.
  52. Web site: Miele W1 TwinDos Technologie A unique dispensing system with 2-phase detergent for unbeatably clean laundry . 2023-08-06 . www.miele.co.uk . 2018-02-20 . https://web.archive.org/web/20180220151919/https://www.miele.co.uk/microsite/twindos/ . dead .
  53. Web site: The Adaptive Dispenser™ Takes On PODS to Clean Your Clothes . www.electroluxappliances.com.
  54. Web site: CapDosing – Product benefits of detergents . 2018-02-19 . www.miele.com.au.
  55. News: Máquina de Lavar Consul 8kg Lavagem Econômica. Consul. 2018-02-19. pt-BR.
  56. News: Máquina de Lavar Consul 16kg com Ciclo Edredom. Consul. 2018-02-19. pt-BR.
  57. News: Máquina de Lavar Consul 11kg com Lavagem Econômica. Consul. 2018-02-19. pt-BR.
  58. News: Máquina de Lavar Consul 11kg com Reutilização de Água. Consul. 2018-02-19. pt-BR.
  59. News: Máquina de Lavar Consul 10kg com Lavagem Econômica. Consul. 2018-02-19. pt-BR.
  60. Web site: How "Ecobubble" Works. news.samsung.com. en. 2018-02-19.
  61. Web site: Samsung WF90F7E6U6W. January 30, 2014. Trusted Reviews.
  62. Web site: Washing machine with a bubble generator.
  63. Web site: Bubble generator and washing machine having the same.
  64. Web site: Foam generator for washing machine.
  65. Web site: 洗濯機.
  66. Web site: 洗濯機.
  67. Web site: WA16F7L4UWA Wobble Technology 16 kg WA16F7L4UWACX6 Samsung Caribbean. Samsung latin_en. 2018-02-19.
  68. Web site: Wobble Technology. www.samsung.com. en. 2018-02-19.
  69. Web site: WA4000HS Top Loader with Wobble Pulsator, 9 kg WA90H4400SS/AP Samsung Caribbean. Samsung latin_en. 2018-02-19.
  70. Web site: Active Dual Wash – 13 Kg top loading washing machine WA13J5730SS/YL Samsung Saudi Arabia . 2018-02-19 . Samsung sa_en . en-SA.
  71. Web site: FW/FD/FA/JFAシリーズ特長:泡洗浄W 洗濯機/衣類乾燥機 Panasonic. panasonic.jp. ja. 2018-02-19.
  72. News: Máquina de Lavar Consul 8kg Lavagem Econômica. Consul. 2018-02-19. pt-BR.
  73. Web site: 洗濯乾燥機.
  74. Web site: 洗濯機.
  75. Web site: LG SMART DIAGNOSIS LG U.K.. www.lg.com. en. 2018-02-19.
  76. Web site: Use Smart Care. Samsung Electronics America. en. 2018-02-19.
  77. Web site: LG Video Tutorials: LG Washer / Dryer – NFC Tag On – Cycle Download LG U.S.A. . 2018-02-19 . www.lg.com . en.
  78. Web site: Washing Machines Freestanding. Samsung uk. en-GB. 2018-02-19.
  79. Web site: ななめドラム洗濯乾燥機 NA-VX900AL/R | 商品一覧 | 洗濯機/衣類乾燥機 | Panasonic . panasonic.jp . ja.
  80. Web site: Especificações de Candy CST 27LE/1-S. www.manual.gt.
  81. Web site: Dyson. James. Inside Dyson: CR01. dyson.co.uk. 13 July 2012. https://web.archive.org/web/20130523024545/http://content.dyson.co.uk/insideDyson/article.asp?aID=cr01&disType=nonFlash&dir=&cp=&hf=1&js=1. 23 May 2013. dead.
  82. News: James Dyson on Killing the Contrarotator, His 'Educative Failure'. 2012-12-18. Bloomberg.com. 2018-02-19. en.
  83. Web site: 2004-11-12 . Dyson – Patent and design applications . dead . https://web.archive.org/web/20041112141138/http://www.international.dyson.com/tech/contrarotator/patents.asp . 2004-11-12 . 2018-02-19.
  84. Web site: Calypso Washing Machine Class Settlement. https://web.archive.org/web/20060406002305/http://www.calypsosettlement.com/faq.htm. dead. 2006-04-06. 2006-04-06. 2018-02-19.
  85. Web site: washers/lg-WM5000HVA-front-load-washer. www.lg.com. en. 2018-02-19.
  86. Web site: WF22H6300 Washer with Super Speed, 22 kg WF22H6300AG/AX . Samsung Caribbean . 2018-02-19.
  87. Web site: DWD-CV701PC WALL MOUNTED WASHING MACHINE(3KG, 700RPM). Electronics Review. 4 May 2020. en.
  88. Web site: 2018-02-19. en. LG 2kg, TWIN Load Washing Machine. LG Singapore.
  89. Web site: WA24J8700GP Faster Wash Cycle, 24 kg WA24J8700GP/AX . Samsung Caribbean . 2018-02-19.
  90. Web site: LG Washing Machine with Big Capacity. www.lg.com. en. 2018-02-19.
  91. https://web.archive.org/web/20060219032209/http://www.sanyo.co.jp/koho/hypertext4-eng/0602/0202-1e.html . 2006-02-19 . SANYO Announces the World-First Drum Type Washing Machine with 'Air Wash' Function . 2006-02-02 . Sanyo . 2018-12-16 . live .
  92. Web site: Whirlpool's Eco Monitor guarantees energy optimisation – The KBzine . 2016-07-03 . www.thekbzine.com.
  93. Web site: Keep Young Kids Safe From Front-Load Washing Machine Accidents. Kimberly. Janeway. Consumer Reports. 8 August 2019 .
  94. Web site: You're Probably Washing Your Clothes Wrong, but Hisense Wants to Fix That. Asha. Barbaschow. July 20, 2023.
  95. Web site: Samsung FlexWash™: 2-in-1 Combo Washers Samsung US. Samsung Electronics America. en. 2018-02-19.
  96. Web site: Samsung FlexDry™: 2-in-1 Combo Dryers Samsung US. Samsung Electronics America. en. 2018-02-19.
  97. Web site: LG TWINWash™: Dual Washer w/ Flexible Washing Options LG USA. www.lg.com. en. 2018-02-19.
  98. Web site: LG WM3180CW: Large Front Load Washer w/ ColdWash Technology LG USA. www.lg.com. en. 2018-02-19.
  99. Web site: Samsung HA: AddWash™, Ecobubble, Washing Machine. Samsung uk. en-GB. 2018-02-19.
  100. Web site: WA8750 5.4 cu. ft. activewash™ Top Load Washer with Integrated Touch Controls Washers – WA54M8750AV/A4 Samsung US . 2018-02-19 . Samsung Electronics America . en.
  101. Web site: Samsung Cuts Laundry Time in Half with Groundbreaking QuickDrive™ Technology. news.samsung.com. en. 2018-12-16.
  102. Web site: Biden administration sets new efficiency standards for washing machines, clothes dryers.
  103. The U.S. Is Requiring More Efficient Home Appliances: What to Know. Anisha. Kohli. February 11, 2023. TIME.
  104. Web site: Cleaning the Lint Filter of a Samsung Top Load Washing Machine | Samsung Australia.
  105. Web site: Repair Maste dor Frigidaire Automatic Washers . www.uncleharrywizard.com.
  106. Web site: Washing machine.
  107. Web site: Washing machine.
  108. Web site: Centering and stabilizing apparatus for a combined washing machine and extractor.
  109. Web site: Clothes washing machine.
  110. Book: Electrical Dealer . 1955 .
  111. Web site: Laundry machine utilizing a wobble-type agitator.
  112. Web site: Laundry apparatus.
  113. Web site: Clothes washing machine having a wobble-type agitator.
  114. Web site: 取扱説明書 . zh . Operating instructions . aqua-has.com.
  115. Web site: Wobbling basket type clotheswashing machine.
  116. Web site: Washing machine.
  117. W10329932 L-84 Whirlpool vertical modular washer job aid
  118. Web site: Laundry Products Research . March 2008.
  119. Web site: About.com . 2010-10-26 . 2010-06-14 . https://web.archive.org/web/20100614071512/http://housewares.about.com/lw/Home-Garden/Home-improvement-renovation/Top-Loading-vs-Front-Loading-Washers-Which-is-Better-.htm . dead .
  120. Web site: Consumer Energy Center.
  121. Web site: Which Spin Cycle Should I Use?. Domex Ltd. en-GB. 2020-05-01.
  122. Web site: 2021-06-23 . How long are washing machine cycle times? . 2022-08-13 . CHOICE . en-au.
  123. Web site: Why can't modern washing machines rinse properly? . 31 August 2007 . Whitegoodshelp.co.uk . 2010-02-16.
  124. Web site: Allergy Tips and Advice for Household Cleaning . Allergyuk.org . 2010-02-16 . https://web.archive.org/web/20100613062143/http://allergyuk.org/fs_handyhints.aspx . 2010-06-13 . dead .
  125. Web site: Sudeep . Anamika . Get To Know Your Washer Dryer Settings . Bosch . Anamika Sudeep . 24 July 2020.
  126. Web site: Unitary balance ring for a washing machine appliance .
  127. Web site: Experimental and Analytical Investigation on a Liquid Balance Ring for Automatic Washing Machines | ESDA | ASME Digital Collection.
  128. Web site: Balance ring and fastener guide for a washing machine.
  129. Web site: Washing machine and method of controlling the same.
  130. Web site: Washing machine having ball balancers.
  131. Web site: LIFE. March 20, 1950. Time Inc. Google Books.
  132. Web site: Oakland Tribune 25 July 1949 — California Digital Newspaper Collection. cdnc.ucr.edu.
  133. Web site: Washing machine usage (part 2) . Washerhelp.co.uk . 2010-02-16.
  134. Web site: DIY washing machine repairs (Part 4) . Washerhelp.co.uk . 2010-02-16.
  135. Web site: Phil . 20 August 2013 . Bulging Hose? You Need a TimeOut! – Automatic Shut Off Valve . 2023-03-24 . Home Fixated.
  136. Web site: Water valves for washing machines . Community Association Underwriters of America, Inc. . 2023-03-24.
  137. Web site: K . Kelvin . Best Washing Machine Shut off Valve in 2023: How to Choose . House Owners Guide . 2023-03-24 . en-us . 9 June 2022.
  138. Web site: Washing Machine Shut Off Valve (Smart Valves) . keymicrosystems.com . 2023-03-24 . Tauranga, New Zealand . 19 June 2018.
  139. Book: 978-3-906484-57-0. Compendium of Sanitation Systems and Technologies . 2nd . Tilley, E. . Ulrich, L. . Lüthi, C. . Reymond, Ph. . Zurbrügg, C.. Swiss Federal Institute of Aquatic Science and Technology (Eawag) . Duebendorf, Switzerland. 147. 2014.
  140. Web site: Clothes Washers Key Product Criteria . Energystar.gov . 2012-06-01.
  141. Web site: ENERGY STAR Qualified Clothes Washers . Energystar.gov . 2011-01-01 . 2012-06-01.
  142. Web site: Tax Incentives Assistance Project . Energytaxincentives.org . 2012-06-01 . 2011-05-20 . https://web.archive.org/web/20110520151331/http://energytaxincentives.org/builders/appliances.php . dead .
  143. Web site: Clothes Washers Key Product Criteria . live . https://web.archive.org/web/20151109211645/http://www.energystar.gov/index.cfm?c=clotheswash.pr_crit_clothes_washers . November 9, 2015 . Energy Star.
  144. Katayama . Michiko . Sugihara . Reiko . 2011-02-14 . Which type of washing machine should you choose? . International Journal of Consumer Studies . 35 . 2. 237–242 . 10.1111/j.1470-6431.2010.00977.x. 1470-6423.
  145. Web site: Lavadora de Roupas - Qual a melhor marca?. Guilherme. 2017-08-17. Isopasse. pt-BR. 2018-12-16.
  146. "As mulheres sufocam os homens". Revista Veja, issue 2,363, 5 March 2014 (in Portuguese) Web site: Acervo Digital VEJA - Digital Pages . 2014-04-03 . live . https://web.archive.org/web/20160402113729/http://veja.abril.com.br/acervodigital/home.aspx . 2016-04-02 .
  147. Web site: Galeotti. Giulia. Metti il detersivo, chiudi il coperchio e rilassati. L'Osservatore Romano. 25 July 2011. IT. 8 March 2009.
  148. Web site: Fridges And Washing Machines Liberated Women, Study Suggests . Sciencedaily.com . 2009-03-12 . 2012-06-01.
  149. Web site: Hans Rosling and the magic washing machine . TED Conferences . December 2010 . 17 November 2011.
  150. E McGaughey, "Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy" (2018) SSRN, part 3(4)
  151. Book: Finnegan, Frances. Do Penance or Perish: Magdalen Asylums in Ireland. 2004. Oxford University Press.
  152. Meehan. Ciara. 28 November 2017. 'Cope the Modern Way': Electricity and the Irish Housewife, 1930s–1960s. Irish Archives. 25. 10. Mamo McDonald – born in 1929 and a former president of the Irish Countrywomen’s Association – replied without hesitation that the washing machine had had the greatest impact.. School of Humanities, University of Hertfordshire.
  153. Web site: Dhobi tradition far from washed up. Rebecca Bundhun. thenational.ae. 15 December 2012 . 19 January 2015.
  154. Web site: Indian laundry men spin out decades-old tradition. Photos. 19 January 2015. NBC News. 19 January 2015.
  155. Web site: Are new washing machines only built to last 5 years? . Washerhelp.co.uk . 2012-06-01.
  156. Electricity and water consumption for laundry washing by washing machine worldwide . Energy Efficiency . 10.1007/s12053-009-9072-8. 2010 . Pakula . Christiane . Stamminger . Rainer . 3 . 4 . 365–382 . 2010EnEff...3..365P . 154072195.
  157. Web site: 2017-11-10 . Laundry: lightening the load . 2023-12-13 . Environment . en.