Cleft lip and cleft palate explained

Cleft lip and palate
Field:Oral and Maxillofacial Surgery, Otorhinolaryngology, pediatrics
Synonyms:Hare-lip, cleft lip and palate
Symptoms:Opening in the upper lip that may extend into the nose or palate
Complications:Feeding problems, speech problems, hearing problems, frequent ear infections
Onset:Present at birth
Causes:Usually unknown
Risks:Smoking during pregnancy, diabetes, obesity, older mother, certain medications[1]
Treatment:Surgery, speech therapy, dental care
Prognosis:Good (with treatment)
Frequency:1.5 per 1000 births (developed world)
Deaths:3,800 (2017)

A cleft lip contains an opening in the upper lip that may extend into the nose. The opening may be on one side, both sides, or in the middle. A cleft palate occurs when the palate (the roof of the mouth) contains an opening into the nose. The term orofacial cleft refers to either condition or to both occurring together. These disorders can result in feeding problems, speech problems, hearing problems, and frequent ear infections. Less than half the time the condition is associated with other disorders.[2]

Cleft lip and palate are the result of tissues of the face not joining properly during development.[2] As such, they are a type of birth defect.[2] The cause is unknown in most cases.[2] Risk factors include smoking during pregnancy, diabetes, obesity, an older mother, and certain medications (such as some used to treat seizures).[2] [1] Cleft lip and cleft palate can often be diagnosed during pregnancy with an ultrasound exam.[2]

A cleft lip or palate can be successfully treated with surgery.[2] This is often done in the first few months of life for cleft lip and before eighteen months for cleft palate.[2] Speech therapy and dental care may also be needed.[2] With appropriate treatment, outcomes are good.[2]

Cleft lip and palate occurs in about 1 to 2 per 1000 births in the developed world.[1] Cleft lip is about twice as common in males as females, while cleft palate without cleft lip is more common in females.[1] In 2017, it resulted in about 3,800 deaths globally, down from 14,600 deaths in 1990.[3] [4] Cleft lips are commonly known as hare-lips because of their resemblance to the lips of hares or rabbits.[5]

Signs and symptoms

Cleft lip

If the cleft does not affect the palate structure of the mouth, it is referred to as cleft lip. Cleft lip is formed in the top of the lip as either a small gap or an indentation in the lip (partial or incomplete cleft), or it continues into the nose (complete cleft). Lip cleft can occur as a one-sided (unilateral) or two-sided (bilateral) condition. It is due to the failure of fusion of the maxillary prominence and medial nasal processes (formation of the primary palate).

A mild form of a cleft lip is a microform cleft.[6] A microform cleft can appear as small as a little dent in the red part of the lip or look like a scar from the lip up to the nostril.[7] In some cases muscle tissue in the lip underneath the scar is affected and might require reconstructive surgery.[8] It is advised to have newborn infants with a microform cleft checked with a craniofacial team as soon as possible to determine the severity of the cleft.[9]

Cleft palate

Cleft palate is a condition in which the two plates of the skull that form the hard palate (roof of the mouth) are not completely joined. The soft palate is in these cases cleft as well. In most cases, cleft lip is also present.

Palate cleft can occur as complete (soft and hard palate, possibly including a gap in the jaw) or incomplete (a 'hole' in the roof of the mouth, usually as a cleft soft palate). When cleft palate occurs, the uvula is usually split. It occurs due to the failure of fusion of the lateral palatine processes, the nasal septum, or the median palatine processes (formation of the secondary palate).

The hole in the roof of the mouth caused by a cleft connects the mouth directly to the inside of the nose.

Note: the next images show the roof of the mouth. The top shows the nose, the lips are colored pink. For clarity the images depict a toothless infant.

A result of an open connection between the mouth and inside the nose is called velopharyngeal insufficiency (VPI). Because of the gap, air leaks into the nasal cavity resulting in a hypernasal voice resonance and nasal emissions while talking.[10] Secondary effects of VPI include speech articulation errors (e.g., distortions, substitutions, and omissions) and compensatory misarticulations and mispronunciations (e.g., glottal stops and posterior nasal fricatives).[11] Possible treatment options include speech therapy, prosthetics, augmentation of the posterior pharyngeal wall, lengthening of the palate, and surgical procedures.

Submucous cleft palate can also occur, which is a cleft of the soft palate with a split uvula, a furrow along the midline of the soft palate, and a notch in the back margin of the hard palate.[12] The diagnosis of submucous cleft palate often occurs late in children as a result of the nature of the cleft.[13] While the muscles of the soft palate are not joined, the mucosal membranes covering the roof of the mouth appear relatively normal and intact.[14]

Teeth

Tooth development can be delayed with increasing severity of CLP. Some of the dental problems affect the primary teeth, but most of the problems arise after the permanent teeth erupt. Problems may include fused teeth, missing teeth, and extra teeth erupting behind normal teeth. Missing teeth or extra teeth are both normal occurrences. Typically, the lateral incisors are missing. The enamel (outermost layer of the tooth) is commonly found to be hypomineralized and hypoplastic, making the teeth more likely to decay. As CLP can make oral hygiene more difficult, there is an increased rate of cavities. In addition, abnormal positioning of individual teeth may affect occlusion, which can create an open bite or cross bite. This in turn can then affect the patient's speech.[15] [16]

Complications

Cleft may cause problems with feeding, ear disease, speech, socialization, and cognition.

Due to lack of suction, an infant with a cleft may have trouble feeding. An infant with a cleft palate will have greater success feeding in a more upright position. Gravity will help prevent milk from coming through the baby's nose if he/she has cleft palate. Gravity feeding can be accomplished by using specialized equipment, such as the Haberman Feeder. Another equipment commonly used for gravity feeding is a customized bottle with a combination of nipples and bottle inserts. A large hole, crosscut, or slit in the nipple, a protruding nipple and rhythmically squeezing the bottle insert can result in controllable flow to the infant without the stigma caused by specialized equipment.

Individuals with cleft also face many middle ear infections which may eventually lead to hearing loss. The Eustachian tubes and external ear canals may be angled or tortuous, leading to food or other contamination of a part of the body that is normally self-cleaning. Hearing is related to learning to speak. Babies with palatal clefts may have compromised hearing and therefore, if the baby cannot hear, it cannot try to mimic the sounds of speech. Thus, even before expressive language acquisition, the baby with the cleft palate is at risk for receptive language acquisition. Because the lips and palate are both used in pronunciation, individuals with cleft usually need the aid of a speech therapist.

Tentative evidence has found that those with clefts perform less well at language.[17]

Psychosocial issues

There is research dedicated to the psychosocial development of individuals with cleft palate. A cleft palate/lip may impact an individual's self-esteem, social skills and behavior. Self-concept may be adversely affected by the presence of a cleft lip or cleft palate, particularly among girls.[18] Negative outcomes can also be associated with the long durations of hospitalization. Psychological issues could extend not just to the individual with CLP but also to their families, particularly their mothers, that experience varying levels of depression and anxiety.[19] [20]

Research has shown that during the early preschool years (ages 3–5), children with cleft lip or cleft palate tend to have a self-concept that is similar to their peers without a cleft. However, as they grow older and their social interactions increase, children with clefts tend to report more dissatisfaction with peer relationships and higher levels of social anxiety. Experts conclude that this is probably due to the associated stigma of visible deformities and possible speech impediments. Children who are judged as attractive tend to be perceived as more intelligent, exhibit more positive social behaviors, and are treated more positively than children with cleft lip or cleft palate.[21] Children with clefts tend to report feelings of anger, sadness, fear, and alienation from their peers, but these children were similar to their peers in regard to "how well they liked themselves."

The relationship between parental attitudes and a child's self-concept is crucial during the preschool years. It has been reported that elevated stress levels in mothers correlated with reduced social skills in their children.[22] Strong parent support networks may help to prevent the development of negative self-concept in children with cleft palate. In the later preschool and early elementary years, the development of social skills is no longer only impacted by parental attitudes but is beginning to be shaped by their peers. A cleft lip or cleft palate may affect the behavior of preschoolers. Experts suggest that parents discuss with their children ways to handle negative social situations related to their cleft lip or cleft palate. A child who is entering school should learn the proper (and age-appropriate) terms related to the cleft. The ability to confidently explain the condition to others may limit feelings of awkwardness and embarrassment and reduce negative social experiences.[23]

As children reach adolescence, the period of time between age 13 and 19, the dynamics of the parent-child relationship change as peer groups are now the focus of attention. An adolescent with cleft lip or cleft palate will deal with the typical challenges faced by most of their peers including issues related to self-esteem, dating and social acceptance.[24] [25] [26] Adolescents, however, view appearance as the most important characteristic, above intelligence and humor.[27] This being the case, adolescents are susceptible to additional problems because they cannot hide their facial differences from their peers. Adolescent boys typically deal with issues relating to withdrawal, attention, thought, and internalizing problems, and may possibly develop anxiousness-depression and aggressive behaviors. Adolescent girls are more likely to develop problems relating to self-concept and appearance. Individuals with cleft lip or cleft palate often deal with threats to their quality of life for multiple reasons including unsuccessful social relationships, deviance in social appearance, and multiple surgeries.

Cause

Most clefts are polygenic and multifactorial in origin with many genetic and environmental factors contributing. Genetic factors cause clefts in 20% to 50% of the cases and the remaining clefts are attributable to either environmental factors (such as teratogens) or gene-environment interactions. The polygenic/multifactorial inheritance model predicts that most individuals will be born without clefts; however with a number of genetic or environmental factors, it can result in cleft formation.

The development of the face is coordinated by complex morphogenetic events and rapid proliferative expansion, and is thus highly susceptible to environmental and genetic factors, rationalising the high incidence of facial malformations. During the first six to eight weeks of pregnancy, the shape of the embryo's head is formed. Five primitive tissue lobes grow:

If these tissues fail to meet, a gap appears where the tissues should have joined (fused). This may happen in any single joining site, or simultaneously in several or all of them. The resulting birth defect reflects the locations and severity of individual fusion failures (e.g., from a small lip or palate fissure up to a completely malformed face).

The upper lip is formed earlier than the palate, from the first three lobes named a to c above. Formation of the palate is the last step in joining the five embryonic facial lobes, and involves the back portions of the lobes b and c. These back portions are called palatal shelves, which grow towards each other until they fuse in the middle.[28] This process is very vulnerable to multiple toxic substances, environmental pollutants, and nutritional imbalance. The biologic mechanisms of mutual recognition of the two cabinets, and the way they are glued together, are quite complex and obscure despite intensive scientific research.[28]

Orofacial clefts may be associated with a syndrome (syndromic) or may not be associated with a syndrome (nonsyndromic). Syndromic clefts are part of syndromes that are caused by a variety of factors such as environment and genetics or an unknown cause. Nonsyndromic clefts, which are not as common as syndromic clefts, also have a genetic cause.[29]

Genetics

Genetic factors contributing to cleft lip and cleft palate formation have been identified for some syndromic cases. Many clefts run in families, even though in some cases there does not seem to be an identifiable syndrome present.[30] A number of genes are involved including cleft lip and palate transmembrane protein 1 and GAD1,[31] One study found an association between mutations in the HYAL2 gene and cleft lip and cleft palate formation.[32]

Syndromes

In some cases, cleft palate is caused by syndromes that also cause other problems:

Specific genes

TypeOMIMGeneLocus
OFC1?6p24
OFC2?2p13
OFC3?19q13
OFC4?4q
OFC5MSX14p16.1
OFC6?1q
OFC7PVRL111q
OFC8TP633q27
OFC9?13q33.1-q34
OFC10SUMO12q32.2-q33
OFC11BMP414q22
OFC12?8q24.3

Many genes associated with syndromic cases of cleft lip/palate (see above) have been identified to contribute to the incidence of isolated cases of cleft lip/palate. This includes in particular sequence variants in the genes IRF6, PVRL1 and MSX1.[42] The understanding of the genetic complexities involved in the morphogenesis of the midface, including molecular and cellular processes, has been greatly aided by research on animal models, including of the genes BMP4, SHH, SHOX2, FGF10 and MSX1.

Environmental factors

Environmental influences may also cause, or interact with genetics to produce, orofacial clefts. An example of the link between environmental factors and genetics comes from a research on mutations in the gene PHF8. The research found that PHF8 encodes for a histone lysine demethylase,[43] and is involved in epigenetic regulation. The catalytic activity of PHF8 depends on molecular oxygen, a factor considered important from reports on increased incidence of cleft lip/palate in mice that have been exposed to hypoxia early during pregnancy.[44]

Cleft lip and other congenital abnormalities have also been linked to maternal hypoxia caused by maternal smoking,[45] with the estimated attributable fraction of orofacial clefts due to smoking in early pregnancy being 6.1%. Orofacial clefts occur very early in pregnancy and so smoking cessation right after recognition of pregnancy is unlikely to reduce the exposure during the critical time period.[46]

Maternal alcohol use has also been linked to cleft lip and palate due to the effects on the cranial neural crest cells. The degree of the effect, however, is unknown and requires further research.[47] Some forms of maternal hypertension treatment have been linked to cleft lip and palate.[48] Other environmental factors that have been studied include seasonal causes (such as pesticide exposure); maternal diet and vitamin intake; retinoids (members of the vitamin A family); anticonvulsant drugs; nitrate compounds; organic solvents; parental exposure to lead; alcohol; cigarette use; and a number of other psychoactive drugs (e.g. cocaine, crack cocaine, heroin).

Current research continues to investigate the extent to which folic acid can reduce the incidence of clefting.[49] Folic acid alone or in combination with vitamins and minerals prevents neural tube defects but does not have a clear effect on cleft lip palate incidence.[50] The mechanism behind beneficial folate supplementation is due to folate playing a pivotal role in DNA synthesis and methylation and contributes to both development and gene expression.[51]

Diagnosis

Traditionally, the diagnosis is made at the time of birth by physical examination. Recent advances in prenatal diagnosis have allowed obstetricians to diagnose facial clefts in utero with ultrasonography.[52]

Clefts can also affect other parts of the face, such as the eyes, ears, nose, cheeks, and forehead. In 1976, Paul Tessier described fifteen lines of cleft. Most of these craniofacial clefts are even rarer and are frequently described as Tessier clefts using the numerical locator devised by Tessier.[53]

Classification

See main article: Classification of cleft lip and cleft palate.

Cleft lip and cleft palate is an "umbrella term" for a collection of orofacial clefts. It includes clefting of the upper lip, the maxillary alveolus (dental arch), and the hard or soft palate, in various combinations. Proposed anatomic combinations include:[54]

Prenatal diagnosis

Cleft lip with or without palate is classified as the most common congenital birth defect. It has been noted that the prevalence of orofacial clefts varies by race. The highest number of cases have been recorded among Asians and Native Americans, followed by Europeans, Hispanics and African-Americans. The critical period for cleft development ranges from the 4th to the 12th week of intrauterine life. Clefts of the primary palate develop between the 4th and 7th weeks of intrauterine life, while clefts of the secondary palate develop between the 8th and 12th embryonic weeks.

Accurate evaluation of craniofacial malformations is usually possible with the ultrasound scan performed during pregnancy. This is however not a routine procedure according to the American Institute of Ultrasound in Medicine. The accuracy of ultrasonography for prenatal diagnosis of cleft lip +/- palate is dependent on the experience of the sonologist, maternal body type, foetal position, the amount of amniotic fluid and the type of cleft.

Prenatal diagnosis enables appropriate and timely education and discussion with parents by the cleft team. This helps improve the quality of treatment received by the child and improves quality of life.

An accurate prenatal diagnosis of the CLP anomaly is critical for establishing long-term treatment planning, prediction of treatment outcome, and discussion and education of the parent. Although there is no intrauterine treatment for CLP, both mother and child benefit from early diagnosis and education. A multidisciplinary team approach is now accepted as the standard of care in dealing with CLP patients.

The time period immediately after the diagnosis and the first year after the birth is most challenging for parents. A systematically planned treatment plan and support system will help assist parents. The ultimate aim is to help educate parents and create awareness so as to improve care provided for the child.[55]

Treatment

Cleft lip and palate is very treatable; however, the kind of treatment depends on the type and severity of the cleft.

Most children with a form of clefting are monitored by a cleft palate team or craniofacial team through young adulthood.[56] Care can be lifelong and are looked after by craniofacial cleft teams often consist of: cleft surgeons, orthodontists, speech and language therapists, restorative dentists, psychologists, ENT surgeons and audio-logical physicians. Treatment procedures can vary between craniofacial teams. For example, some teams wait on jaw correction until the child is aged 10 to 12 (argument: growth is less influential as deciduous teeth are replaced by permanent teeth, thus saving the child from repeated corrective surgeries), while other teams correct the jaw earlier (argument: less speech therapy is needed than at a later age when speech therapy becomes harder). Within teams, treatment can differ between individual cases depending on the type and severity of the cleft.

Cleft lip

Within the first 2–3 months after birth, surgery is performed to close the cleft lip. While surgery to repair a cleft lip can be performed soon after birth, often the preferred age is at approximately 10 weeks of age, following the "rule of 10s" coined by surgeons Wilhelmmesen and Musgrave in 1969 (the child is at least 10 weeks of age; weighs at least 10 pounds, and has at least 10g/dL hemoglobin).[57] [58] If the cleft is bilateral and extensive, two surgeries may be required to close the cleft, one side first, and the second side a few weeks later. The most common procedure to repair a cleft lip is the Millard procedure pioneered by Ralph Millard. Millard performed the first procedure at a Mobile Army Surgical Hospital (MASH) unit in Korea.[59]

Often an incomplete cleft lip requires the same surgery as complete cleft. This is done for two reasons. Firstly the group of muscles required to purse the lips run through the upper lip. To restore the complete group a full incision must be made. Secondly, to create a less obvious scar the surgeon tries to line up the scar with the natural lines in the upper lip (such as the edges of the philtrum) and tuck away stitches as far up the nose as possible. Incomplete cleft gives the surgeon more tissue to work with, creating a more supple and natural-looking upper lip.

Pre-surgical devices

In some cases of a severe bilateral complete cleft, the premaxillary segment will be protruded far outside the mouth.

Nasoalveolar molding prior to surgery can improve long-term nasal symmetry where there is complete unilateral cleft lip–cleft palate, compared to correction by surgery alone, according to a retrospective cohort study.[60] In this study, significant improvements in nasal symmetry were observed in multiple areas including measurements of the projected length of the nasal ala (lateral surface of the external nose), position of the superoinferior alar groove, position of the mediolateral nasal dome, and nasal bridge deviation. "The nasal ala projection length demonstrated an average ratio of 93.0 percent in the surgery-alone group and 96.5 percent in the nasoalveolar molding group," this study concluded. A systematic review found in conclusion that nasoalveolar molding had a positive effect on the primary surgery of cleft lip/or palate treatment and aesthetics.[61]

Cleft palate

Often a cleft palate is temporarily covered by a palatal obturator (a prosthetic device made to fit the roof of the mouth covering the gap). This device re-positions displaced alveolar segments and helps reduce the cleft lip separation. The obturator will improve speech as there's now proper airflow and improve feeding and breathing as the gap in the hard and soft palate is closed over so cannot affect it.[62]

Cleft palate can also be corrected by surgery, usually performed between 6 and 12 months. Approximately 20–25% only require one palatal surgery to achieve a competent velopharyngeal valve capable of producing normal, non-hypernasal speech. However, combinations of surgical methods and repeated surgeries are often necessary as the child grows. One of the new innovations of cleft lip and cleft palate repair is the Latham appliance.[63] The Latham is surgically inserted by use of pins during the child's fourth or fifth month. After it is in place, the doctor, or parents, turn a screw daily to bring the cleft together to assist with future lip or palate repair.

If the cleft extends into the maxillary alveolar ridge, the gap is usually corrected by filling the gap with bone tissue. The bone tissue can be acquired from the individual's own chin, rib or hip.

At age 1–7 years the child is regularly reviewed by the cleft team.

Age 7–12 years, for the children born with alveolar clefts, they may need to have a secondary alveolar bone graft. This is where autogenous cancellous bone from a donor site (often the pelvic bone) is transplanted into the alveolar cleft region. This transplant of bone will close the osseous cleft of the alveolus, close any oro-nasal fistulae and will become integrated with the maxillary bone. It provides bone for teeth to erupt into and to allow implants to be placed as a possible future treatment option. The procedure should be carried out before the upper canine has erupted. Ideally the root of the canine should be one to two-thirds formed and that there is a space available to place the bone graft. Radio-graphs are taken to determine the quantity of missing bone in the cleft area.

Other surgeries

Orthognathic surgery – surgical cutting of bone to realign the upper jaw (osteotomy). The bone is cut then re-positioned and held together by wires or rigid fixation plates to ensure there's no anterior-posterior discrepancy, also to reduce scarring as it reduces growth. Single piece or multi-piece osteotomy exist. Single piece osteotomy is carried out where there is sufficient alveolar continuity achieved from a successful bone graft. Multi piece osteotomy is performed when there is a notable residual alveolar defect with a dental gap and oronasal fistula (communication between the oral and nasal cavities). The goal of both single and multi piece osteotomy is to displace the maxilla forward to obtain adequate occlusion as well to provide better support for upper lip and the nose and to close any fistulae.[64]

Distraction osteogenesis – bone lengthening by gradual distraction. This involves cutting bone and moving ends apart incrementally to allow new bone to form in the gap. This consists of several phases. After attachment of the distracting device and the bone cuts, there is a latency phase of 3–7 days when a callus forms. In the activation phase distraction of the callus induces bony ingrowth which can last up to 15 days depending on the required distraction. Once the required bone length is reached, the distraction device is left to remain in situ as it acts as a rigid skeletal fixation device until the new bone has matured (known as the consolidation period).

Speech

Velopharyngeal insufficiency (VPI) can occur as a result of an unrepaired or repaired cleft lip and palate. VPI is the inability of the soft palate to close tightly against the back of the throat during speech, resulting in incomplete velopharyngeal closure. In turn, this results in speech abnormalities. Velopharyngeal closure is necessary during speech because it forms a seal between the nose and mouth, allowing the production of normal speech sounds. VPI can cause hypernasality (excessive nasal resonance), hyponasality (reduced nasal resonance), or a mixed nasal resonance, which is when hypernasality and hyponasality occur simultaneously.[65] In addition, CLP may cause abnormal positioning of individual teeth, which can in turn affect the patient's ability to make certain sounds when speaking such as the "f" or "v" sound and can also result in a lisp. The changes in speech may also be a manifestation on CLP's effects on the patient's occlusion.

Hearing

Children with cleft palate have a very high risk of developing a middle ear infection, specifically otitis media. This is due to the immature development of the different bones and muscles in the ear. Otitis media is caused by the obstruction of the Eustachian tube, negative middle ear pressure and fluid build-up in the normally air-filled space of the middle ear.[66] This is associated with hearing impairment or loss. The insertion of a ventilation tube into the eardrum is a surgical treatment option commonly used to improve hearing in children with otitis media.[67] In addition, breast milk has been proven to decrease the incidence of otitis media in infants with clefts.

Feeding

There are different options on how to feed a baby with cleft lip or cleft palate which include: breast-feeding, bottle feeding, spoon feeding and syringe feeding. Although breast-feeding is challenging, it improves weight-gain compared to spoon-feeding.[68] Nasal regurgitation is common due to the open space between the oral cavity and the nasal cavity. Bottle feeding can help (with squeezable bottles being easier to use than rigid bottles). In addition, maxillary plates can be added to aid in feeding. Whatever feeding method is established, it is important to keep the baby's weight gain and hydration monitored. Infants with cleft lip or palate may require supplemental feeds for adequate growth and nutrition. Breast feeding position as suggested by specialists can also improve success rate.[69]

Breast-feeding

Babies with cleft lip are more likely to breastfeed successfully than those with cleft palate and cleft lip and palate. Larger clefts of the soft or hard palate may not be able to generate suction as the oral cavity cannot be separated from the nasal cavity when feeding which leads to fatigue, prolonged feeding time, impaired growth and nutrition. Changes in swallowing mechanics may result in coughing, choking, gagging and nasal regurgitation. Even after cleft repair, the problem may still persist as significant motor learning of swallowing and sucking was absent for many months before repair.[70] These difficulties in feeding may result in secondary problems such as poor weight gain, excessive energy expenditure during feeding, lengthy feeding times, discomfort during feeding, and stressful feeding interactions between the infant and the mother. A potential source of discomfort for the baby during or after feeding is bloating or frequent "spit up" which is due to the excessive air intake through the nose and mouth in the open cleft. Babies with cleft lip and or palate should be evaluated individually taking into account the size and location of the cleft and the mother's previous experience with breastfeeding.

Another option is feeding breast milk via bottle or syringe. Since babies with clip lip and cleft palate generate less section when breastfeeding, their nutrition, hydration and weight gain may be affected. This may result in the need for supplemental feeds. Modifying the position of holding the baby may increase the effectiveness and efficiency of breastfeeding.

Alternative Feeding Methods

Preoperative feeding – using a squeezable bottle instead of a rigid bottle can allow a higher volume of food intake and less effort to extract food. Using a syringe is practical, easy to perform and allows greater administered volume of food. It also means there will be weight gain and less time spent feeding.[71]

Post-operative feeding (isolated lip repair, or lip repair associated or not with palatoplasty) – post palatoplasty, some studies believe that inappropriate negative pressure on the suture line may affect results. Babies can be fed by a nasogastric tube instead. Studies suggest babies required less analgesics and shorter hospital stay with nasogastric feeding post-surgery. With bottle-feeding, there was higher feeding rejection and pain and required more frequent and prolonged feeding times.

Treatment schedule

Each person's treatment schedule is individualized. The table below shows a common sample treatment schedule. The colored squares indicate the average timeframe in which the indicated procedure occurs. In some cases, this is usually one procedure, for example lip repair. In other cases, it is an ongoing therapy, for example speech therapy. In most cases of cleft lip and palate that involve the alveolar bone, patients will need a treatment plan including the prevention of cavities, orthodontics, alveolar bone grafting, and possibly jaw surgery.[72]

Age
Palatal obturator                      
Repair cleft lip                      
Repair soft palate                      
Repair hard palate                      
Tympanostomy tube                      
Speech therapy/pharyngoplasty                      
Alveolar cleft grafting                      
Orthodontics                      
Orthognathic surgery                      

Cleft team

People with CLP present with a multiplicity of problems. Therefore, effective management of CLP involves a wide range of specialists. The current model for delivery of this care is the multidisciplinary cleft team. This is a group of individuals from different specialist backgrounds who work closely together to provide patients with comprehensive care from birth through adolescence. This system of delivery of care enables the individuals within the team to function in an interdisciplinary way, so that all aspects of care for CLP patients can be provided in the best way possible.[73]

Outcomes assessment

Measuring the outcomes of CLP treatment has been laden with difficulty due to the complexity and longitudinal nature of cleft care, which spans birth through young adulthood. Prior attempts to study the effectiveness of specific interventions or overall treatment protocols have been hindered by a lack of data standards for outcomes assessment in cleft care.

The International Consortium for Health Outcome Measurement (ICHOM) has proposed the Standard Set of Outcome Measures for Cleft Lip and Palate.[74] [75] The ICHOM Standard Set includes measures for many of the important outcome domains in cleft care (hearing, breathing, eating/drinking, speech, oral health, appearance and psychosocial well-being). It includes clinician-reported, patient-reported, and family-reported outcome measures.

Epidemiology

See main article: Clefting prevalence in different cultures. Cleft lip and palate occurs in about 1 to 2 per 1000 births in the developed world.

Rates for cleft lip with or without cleft palate and cleft palate alone varies within different ethnic groups.

According to CDC, the prevalence of cleft palate in the United States is 6.35/10000 births and the prevalence of cleft lip with or without cleft palate is 10.63/10000 births.[76] The highest prevalence rates for cleft lip, either with or without cleft palate are reported for Native Americans and Asians. Africans have the lowest prevalence rates.[77]

Cleft lip and cleft palate caused about 3,800 deaths globally in 2017, down from 14,600 deaths in 1990.

Prevalence of "cleft uvula" has varied from 0.02% to 18.8% with the highest numbers found among Chippewa and Navajo and the lowest generally in Africans.[78] [79]

Society and culture

Handicap law and abortion controversies

In some countries, cleft lip or palate deformities are considered reasons (either generally tolerated or officially sanctioned) to perform an abortion beyond the legal fetal age limit, even though the fetus is not in jeopardy of life or limb.[80] [81] Some political opponents contend this practice amounts to eugenics based on cosmetic defects rather than practical definitions of a disability.[82]

Works of fiction

The eponymous hero of J. M. Coetzee's 1983 novel Life & Times of Michael K has a cleft lip that is never corrected. In the 1920 novel Growth of the Soil, by Norwegian writer Knut Hamsun, Inger (wife of the main character) has an uncorrected cleft lip which puts heavy limitations on her life, even causing her to kill her own child, who is also born with a cleft lip. The protagonist of the 1924 novel Precious Bane, by English writer Mary Webb, is a young woman living in 19th-century rural Shropshire who eventually comes to feel that her deformity is the source of her spiritual strength. The book was later adapted for television by both the BBC and ORTF in France. Similarly, the main character in Graham Greene's 1936 crime noir novel A Gun for Sale, Raven, has a cleft lip which he is sensitive about, and is described as "an ugly man dedicated to ugly deeds". In the 1976 Patricia A. McKillip novel The Night Gift, one of the high-school aged protagonists is shy because she has a cleft lip, but learns to have more confidence in herself.

In the first edition of Harry Potter and the Chamber of Secrets, one of the people Gilderoy Lockhart stole credit from was a witch with a harelip who banished the Bandon Banshee. In later editions, this was changed to a witch with a hairy chin.[83]

In chapter 26 of Mark Twain's The Adventures of Huckleberry Finn, Huck Finn meets the three Wilks sisters, Mary Jane, Susan, and Joanna. Joanna is described as, "the one who gives herself to good works and has a hare-lip." As a form of offensive synecdoche, Huck Finn refers to Joanna as "the hare-lip" rather than by her name.

Cleft lip and cleft palate are often portrayed negatively in popular culture. Examples include Oddjob, the secondary villain of the James Bond novel Goldfinger by Ian Fleming (the film adaptation does not mention this but leaves it implied) and serial killer Francis Dolarhyde in the novel Red Dragon and its screen adaptations, Manhunter, Red Dragon, and Hannibal.[84] The portrayal of enemy characters with cleft lips and cleft palates, dubbed mutants, in the 2019 video game Rage 2 left Chris Plante of Polygon wondering if the condition would ever be portrayed positively.[85] [86]

Notable cases

NameComments
Jerry ByrdAmerican sportswriter for the Shreveport Journal, 1957–1991, and Bossier Press-Tribune, 1993–2012; born with cleft lip and without cleft palate[87]
John Henry "Doc" HollidayAmerican dentist, gambler and gunfighter of the American Old West, who is usually remembered for his friendship with Wyatt Earp and the Gunfight at the O.K. Corral[88]
TutankhamenEgyptian pharaoh who may have had a slightly cleft palate according to diagnostic imaging[89]
Thorgils SkarthiThorgils 'the hare-lipped'—a 10th-century Viking warrior and founder of Scarborough, England.[90]
Tad LincolnFourth and youngest son of President Abraham Lincoln[91]
Carmit BacharAmerican dancer and singer[92] [93]
Jürgen HabermasGerman philosopher and sociologist[94]
Ljubo MilicevicAustralian professional footballer[95]
Stacy KeachAmerican actor and narrator[96]
Cheech MarinAmerican actor and comedian[97]
Owen SchmittAmerican football fullback[98]
Tim LottEnglish author and journalist[99]
Richard HawleyEnglish musician
Dario ŠarićCroatian professional basketball player[100]
Antoinette BourignonFlemish mystic[101]
Tom BurkeEnglish actor[102]
Franz RogowskiGerman actor[103]

Other animals

Cleft lips and palates are occasionally seen in cattle and dogs, and rarely in goats, sheep, cats, horses, pandas and ferrets. Most commonly, the defect involves the lip, rhinarium, and premaxilla. Clefts of the hard and soft palate are sometimes seen with a cleft lip. The cause is usually hereditary. Brachycephalic dogs such as Boxers and Boston Terriers are most commonly affected.[104] An inherited disorder with incomplete penetrance has also been suggested in Shih tzus, Swiss Sheepdogs, Bulldogs, and Pointers.[105] In horses, it is a rare condition usually involving the caudal soft palate.[106] In Charolais cattle, clefts are seen in combination with arthrogryposis, which is inherited as an autosomal recessive trait. It is also inherited as an autosomal recessive trait in Texel sheep. Other contributing factors may include maternal nutritional deficiencies, exposure in utero to viral infections, trauma, drugs, or chemicals, or ingestion of toxins by the mother, such as certain lupines by cattle during the second or third month of gestation.[107] The use of corticosteroids during pregnancy in dogs and the ingestion of Veratrum californicum by pregnant sheep have also been associated with cleft formation.[108]

Difficulty with nursing is the most common problem associated with clefts, but aspiration pneumonia, regurgitation, and malnutrition are often seen with cleft palate and is a common cause of death. Providing nutrition through a feeding tube is often necessary, but corrective surgery in dogs can be done by the age of twelve weeks.[104] For cleft palate, there is a high rate of surgical failure resulting in repeated surgeries.[109] Surgical techniques for cleft palate in dogs include prosthesis, mucosal flaps, and microvascular free flaps.[110] Affected animals should not be bred due to the hereditary nature of this condition.

See also

Further reading

Notes and References

  1. Watkins SE, Meyer RE, Strauss RP, Aylsworth AS . Classification, epidemiology, and genetics of orofacial clefts . Clinics in Plastic Surgery . 41 . 2 . 149–163 . April 2014 . 24607185 . 10.1016/j.cps.2013.12.003 .
  2. Web site: Facts about Cleft Lip and Cleft Palate. May 8, 2015. October 20, 2014. live. https://web.archive.org/web/20150508162121/http://www.cdc.gov/ncbddd/birthdefects/CleftLip.html. May 8, 2015.
  3. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017 . Lancet . 392 . 10159 . 1736–1788 . November 2018 . 30496103 . 6227606 . 10.1016/S0140-6736(18)32203-7 . GBD 2017 Causes of Death Collaborators .
  4. Web site: GBD Results Tool GHDx. ghdx.healthdata.org. August 2, 2019.
  5. Book: Boklage CE . How new humans are made cells and embryos, twins and chimeras, left and right, mind/selfsoul, sex, and schizophrenia . 2010 . World Scientific . Singapore . 978-981-283-514-7 . 283 . live. https://web.archive.org/web/20170910234036/https://books.google.com/books?id=j7GfgRIgP9YC&pg=PT299. September 10, 2017.
  6. Kim EK, Khang SK, Lee TJ, Kim TG . Clinical features of the microform cleft lip and the ultrastructural characteristics of the orbicularis oris muscle . The Cleft Palate-Craniofacial Journal . 47 . 3 . 297–302 . May 2010 . 19860522 . 10.1597/08-270.1 . 71448247 .
  7. Yuzuriha S, Mulliken JB . Minor-form, microform, and mini-microform cleft lip: anatomical features, operative techniques, and revisions . Plastic and Reconstructive Surgery . 122 . 5 . 1485–1493 . November 2008 . 18971733 . 10.1097/PRS.0b013e31818820bc . 8551875 .
  8. Tosun Z, Hoşnuter M, Sentürk S, Savaci N . Reconstruction of microform cleft lip . Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery . 37 . 4 . 232–235 . 2003 . 14582757 . 10.1080/02844310310016412 . 40850672 .
  9. Tollefson TT, Humphrey CD, Larrabee WF, Adelson RT, Karimi K, Kriet JD . The spectrum of isolated congenital nasal deformities resembling the cleft lip nasal morphology . Archives of Facial Plastic Surgery . 13 . 3 . 152–160 . 2011 . 21576661 . 10.1001/archfacial.2011.26 . free .
  10. Sloan GM . Posterior pharyngeal flap and sphincter pharyngoplasty: the state of the art . The Cleft Palate-Craniofacial Journal . 37 . 2 . 112–122 . March 2000 . 10749049 . 10.1597/1545-1569(2000)037<0112:PPFASP>2.3.CO;2 .
  11. Hill JS . Velopharyngeal insufficiency: An update on diagnostic and surgical techniques . Current Opinion in Otolaryngology & Head and Neck Surgery . 9 . 6 . 365–8 . 2001 . 10.1097/00020840-200112000-00005 . 76256148 .
  12. Kaplan EN . The occult submucous cleft palate . The Cleft Palate Journal . 12 . 356–368 . October 1975 . 1058746 .
  13. Hanny KH, de Vries IA, Haverkamp SJ, Oomen KP, Penris WM, Eijkemans MJ, Kon M, Mink van der Molen AB, Breugem CC . Late detection of cleft palate . European Journal of Pediatrics . 175 . 1 . 71–80 . January 2016 . 26231683 . 4709386 . 10.1007/s00431-015-2590-9 .
  14. Web site: Cleft Lip and Palate . American-Speech-Language-Hearing Association . May 9, 2019.
  15. Book: Goel S . Feeding in Cleft Lip And Cleft Palata Infants. LAP LAMBERT Academic Publishing. 2015. 978-3-659-38212-3. Saarbrücken, Germany. 20–22.
  16. Book: Peterson-Falzone SJ, Trost-Cardamone JE, Karnell MP, Hardin-Jones MA . The clinician's guide to treating cleft palate speech. 978-0-323-33934-6. Second. St. Louis, Missouri . Elsevier . 936145822. September 21, 2016.
  17. Roberts RM, Mathias JL, Wheaton P . Cognitive functioning in children and adults with nonsyndromal cleft lip and/or palate: a meta-analysis . Journal of Pediatric Psychology . 37 . 7 . 786–797 . August 2012 . 22451260 . 10.1093/jpepsy/jss052 . free .
  18. Leonard BJ, Brust JD, Abrahams G, Sielaff B . Self-concept of children and adolescents with cleft lip and/or palate . The Cleft Palate-Craniofacial Journal . 28 . 4 . 347–353 . October 1991 . 1742302 . 10.1597/1545-1569(1991)028<0347:SCOCAA>2.3.CO;2 .
  19. Al-Namankany A, Alhubaishi A . Effects of cleft lip and palate on children's psychological health: A systematic review . Journal of Taibah University Medical Sciences . 13 . 4 . 311–318 . August 2018 . 31435341 . 6694901 . 10.1016/j.jtumed.2018.04.007 .
  20. Hunt O, Burden D, Hepper P, Johnston C . The psychosocial effects of cleft lip and palate: a systematic review . European Journal of Orthodontics . 27 . 3 . 274–285 . June 2005 . 15947228 . 10.1093/ejo/cji004 . free .
  21. Tobiasen JM . Psychosocial correlates of congenital facial clefts: a conceptualization and model . The Cleft Palate Journal . 21 . 3 . 131–139 . July 1984 . 6592056 .
  22. Pope AW, Ward J . Self-perceived facial appearance and psychosocial adjustment in preadolescents with craniofacial anomalies . The Cleft Palate-Craniofacial Journal . 34 . 5 . 396–401 . September 1997 . 9345606 . 10.1597/1545-1569(1997)034<0396:SPFAAP>2.3.CO;2 .
  23. Web site: Cleft Palate Foundation. live. https://web.archive.org/web/20070701095458/http://www.cleftline.org/. July 1, 2007. July 1, 2007.
  24. Snyder HT, Bilboul MJ, Pope AW . Psychosocial adjustment in adolescents with craniofacial anomalies: a comparison of parent and self-reports . The Cleft Palate-Craniofacial Journal . 42 . 5 . 548–555 . September 2005 . 16149838 . 10.1597/04-078R.1 . 37357550 . 10.1.1.624.1274 .
  25. Endriga MC, Kapp-Simon KA . Psychological issues in craniofacial care: state of the art . The Cleft Palate-Craniofacial Journal . 36 . 1 . 3–11 . January 1999 . 10067755 . 10.1597/1545-1569(1999)036<0001:PIICCS>2.3.CO;2 .
  26. Pope AW, Snyder HT . Psychosocial adjustment in children and adolescents with a craniofacial anomaly: age and sex patterns . The Cleft Palate-Craniofacial Journal . 42 . 4 . 349–354 . July 2005 . 16001914 . 10.1597/04-043R.1 . 31313562 .
  27. Prokhorov AV, Perry CL, Kelder SH, Klepp KI . Lifestyle values of adolescents: results from Minnesota Heart Health Youth Program . Adolescence . 28 . 111 . 637–647 . 1993 . 8237549 .
  28. Dudas M, Li WY, Kim J, Yang A, Kaartinen V . Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect . Acta Histochemica . 109 . 1 . 1–14 . 2007 . 16962647 . 10.1016/j.acthis.2006.05.009 .
  29. Book: Meeks NJ, Saenz M, Tsai AC, Elias ER . Genetics & Dysmorphology . 2018 . Current Diagnosis & Treatment: Pediatrics . Hay WW, Levin MJ, Deterding RR, Abzug MJ . 24th . McGraw-Hill Education . August 6, 2019.
  30. Beaty TH, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB, Murray T, Redett RJ, Fallin MD, Liang KY, Wu T, Patel PJ, Jin SC, Zhang TX, Schwender H, Wu-Chou YH, Chen PK, Chong SS, Cheah F, Yeow V, Ye X, Wang H, Huang S, Jabs EW, Shi B, Wilcox AJ, Lie RT, Jee SH, Christensen K, Doheny KF, Pugh EW, Ling H, Scott AF . Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate . Genetic Epidemiology . 35 . 6 . 469–478 . September 2011 . 21618603 . 3180858 . 10.1002/gepi.20595 .
  31. Kanno K, Suzuki Y, Yamada A, Aoki Y, Kure S, Matsubara Y . Association between nonsyndromic cleft lip with or without cleft palate and the glutamic acid decarboxylase 67 gene in the Japanese population . American Journal of Medical Genetics. Part A . 127A . 1 . 11–16 . May 2004 . 15103710 . 10.1002/ajmg.a.20649 . 30016360 .
  32. News: Scientists find genetic mutation that causes cleft lip and palate, heart defects. Sandoiu A . January 17, 2017. Medical News Today. en. January 31, 2017. live. https://web.archive.org/web/20170129210707/http://www.medicalnewstoday.com/articles/315211.php. January 29, 2017.
  33. Dixon MJ, Marazita ML, Beaty TH, Murray JC . Cleft lip and palate: understanding genetic and environmental influences . Nature Reviews. Genetics . 12 . 3 . 167–178 . March 2011 . 21331089 . 3086810 . 10.1038/nrg2933 .
  34. Zucchero TM, Cooper ME, Maher BS, Daack-Hirsch S, Nepomuceno B, Ribeiro L, Caprau D, Christensen K, Suzuki Y, Machida J, Natsume N, Yoshiura K, Vieira AR, Orioli IM, Castilla EE, Moreno L, Arcos-Burgos M, Lidral AC, Field LL, Liu YE, Ray A, Goldstein TH, Schultz RE, Shi M, Johnson MK, Kondo S, Schutte BC, Marazita ML, Murray JC . Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate . The New England Journal of Medicine . 351 . 8 . 769–780 . August 2004 . 15317890 . 10.1056/NEJMoa032909 . 3324418 .
  35. News: Cleft palate genetic clue found . July 1, 2007 . BBC News . August 30, 2004 . live . https://web.archive.org/web/20070208233204/http://news.bbc.co.uk/1/hi/health/3577784.stm . February 8, 2007 .
  36. Kousa YA, Zhu H, Fakhouri WD, Lei Y, Kinoshita A, Roushangar RR, Patel NK, Agopian AJ, Yang W, Leslie EJ, Busch TD, Mansour TA, Li X, Smith AL, Li EB, Sharma DB, Williams TJ, Chai Y, Amendt BA, Liao EC, Mitchell LE, Bassuk AG, Gregory S, Ashley-Koch A, Shaw GM, Finnell RH, Schutte BC . The TFAP2A-IRF6-GRHL3 genetic pathway is conserved in neurulation . Human Molecular Genetics . 28 . 10 . 1726–1737 . May 2019 . 30689861 . 6494790 . 10.1093/hmg/ddz010 .
  37. Siderius LE, Hamel BC, van Bokhoven H, de Jager F, van den Helm B, Kremer H, Heineman-de Boer JA, Ropers HH, Mariman EC . X-linked mental retardation associated with cleft lip/palate maps to Xp11.3-q21.3 . American Journal of Medical Genetics . 85 . 3 . 216–220 . July 1999 . 10398231 . 10.1002/(SICI)1096-8628(19990730)85:3<216::AID-AJMG6>3.0.CO;2-X . free .
  38. Kronwith SD, Quinn G, McDonald DM, Cardonick E, Onyx P, LaRossa D, Borns P, Stambolian DE, Zackai EH . Stickler's syndrome in the Cleft Palate Clinic . Journal of Pediatric Ophthalmology and Strabismus . 27 . 5 . 265–267 . 1990 . 2246742 . 10.3928/0191-3913-19900901-12 .
  39. Mrugacz M, Sredzińska-Kita D, Bakunowicz-Lazarczyk A, Piszcz M . [High myopia as a pathognomonic sign in Stickler's syndrome] . pl . Klinika Oczna . 107 . 4-6 . 369–371 . 2005 . 16118961 .
  40. Sousa SB, Lambot-Juhan K, Rio M, Baujat G, Topouchian V, Hanna N, Le Merrer M, Brunelle F, Munnich A, Boileau C, Cormier-Daire V . Expanding the skeletal phenotype of Loeys-Dietz syndrome . American Journal of Medical Genetics. Part A . 155A . 5 . 1178–1183 . May 2011 . 21484991 . 10.1002/ajmg.a.33813 . 27999412 .
  41. http://www.wrongdiagnosis.com/h/hardikar_syndrome/symptoms.htm#symptom_list Hardikar syndrome symptoms
  42. Cox TC . Taking it to the max: the genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphology . Clinical Genetics . 65 . 3 . 163–176 . March 2004 . 14756664 . 10.1111/j.0009-9163.2004.00225.x . 22472334 .
  43. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ, Ratcliffe PJ, Schofield CJ . PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase . Human Molecular Genetics . 19 . 2 . 217–222 . January 2010 . 19843542 . 4673897 . 10.1093/hmg/ddp480 . Christopher J. Schofield .
  44. Millicovsky G, Johnston MC . Hyperoxia and hypoxia in pregnancy: simple experimental manipulation alters the incidence of cleft lip and palate in CL/Fr mice . Proceedings of the National Academy of Sciences of the United States of America . 78 . 9 . 5722–5723 . September 1981 . 6946511 . 348841 . 10.1073/pnas.78.9.5722 . free . 1981PNAS...78.5722M .
  45. Shi M, Wehby GL, Murray JC . Review on genetic variants and maternal smoking in the etiology of oral clefts and other birth defects . Birth Defects Research. Part C, Embryo Today . 84 . 1 . 16–29 . March 2008 . 18383123 . 2570345 . 10.1002/bdrc.20117 .
  46. Honein MA, Devine O, Grosse SD, Reefhuis J . Prevention of orofacial clefts caused by smoking: implications of the Surgeon General's report . Birth Defects Research. Part A, Clinical and Molecular Teratology . 100 . 11 . 822–825 . November 2014 . 25045059 . 4559232 . 10.1002/bdra.23274 .
  47. Bell JC, Raynes-Greenow C, Turner RM, Bower C, Nassar N, O'Leary CM . Maternal alcohol consumption during pregnancy and the risk of orofacial clefts in infants: a systematic review and meta-analysis . Paediatric and Perinatal Epidemiology . 28 . 4 . 322–332 . July 2014 . 24800624 . 10.1111/ppe.12131 .
  48. Hurst JA, Houlston RS, Roberts A, Gould SJ, Tingey WG . Transverse limb deficiency, facial clefting and hypoxic renal damage: an association with treatment of maternal hypertension? . Clinical Dysmorphology . 4 . 4 . 359–363 . October 1995 . 8574428 . 10.1097/00019605-199510000-00013 . 6330050 .
  49. Boyles AL, Wilcox AJ, Taylor JA, Meyer K, Fredriksen A, Ueland PM, Drevon CA, Vollset SE, Lie RT . Folate and one-carbon metabolism gene polymorphisms and their associations with oral facial clefts . American Journal of Medical Genetics. Part A . 146A . 4 . 440–449 . February 2008 . 18203168 . 2366099 . 10.1002/ajmg.a.32162 .
  50. De-Regil LM, Peña-Rosas JP, Fernández-Gaxiola AC, Rayco-Solon P . Effects and safety of periconceptional oral folate supplementation for preventing birth defects . The Cochrane Database of Systematic Reviews . 2015 . 12 . CD007950 . December 2015 . 26662928 . 8783750 . 10.1002/14651858.CD007950.pub3 .
  51. Wehby GL, Goco N, Moretti-Ferreira D, Felix T, Richieri-Costa A, Padovani C, Queiros F, Guimaraes CV, Pereira R, Litavecz S, Hartwell T, Chakraborty H, Javois L, Murray JC . Oral cleft prevention program (OCPP) . BMC Pediatrics . 12 . 1 . 184 . November 2012 . 23181832 . 3532199 . 10.1186/1471-2431-12-184 . free .
  52. Costello BJ, Edwards SP, Clemens M . Fetal diagnosis and treatment of craniomaxillofacial anomalies . Journal of Oral and Maxillofacial Surgery . 66 . 10 . 1985–1995 . October 2008 . 18848093 . 10.1016/j.joms.2008.01.042 .
  53. Tessier P . Anatomical classification facial, cranio-facial and latero-facial clefts . Journal of Maxillofacial Surgery . 4 . 2 . 69–92 . June 1976 . 820824 . 10.1016/S0301-0503(76)80013-6 .
  54. Allori AC, Mulliken JB, Meara JG, Shusterman S, Marcus JR . Classification of Cleft Lip/Palate: Then and Now . The Cleft Palate-Craniofacial Journal . 54 . 2 . 175–188 . March 2017 . 26339868 . 10.1597/14-080 . 207236616 .
  55. Sreejith VP, Arun V, Devarajan AP, Gopinath A, Sunil M . Psychological Effect of Prenatal Diagnosis of Cleft Lip and Palate: A Systematic Review . Contemporary Clinical Dentistry . 9 . 2 . 304–308 . 2018 . 29875578 . 5968700 . 10.4103/ccd.ccd_673_17 . free .
  56. Book: Bristow L, Bristow S . Making faces: Logan's cleft lip and palate story . Pulsus Group . Oakville, Ontaria, CA . 2007 . 1–92 .
  57. Lydiatt DD, Yonkers AJ, Schall DG . The management of the cleft lip and palate patient . The Nebraska Medical Journal . 74 . 11 . 325–8; discussion 328–9 . November 1989 . 2586685 .
  58. Book: Sriram Bhat M . SRB's Surgical Operations: Text & Atlas. 2014. JP Medical Ltd. 978-93-5025-121-8. 414. en.
  59. Web site: Biography and Personal Archive . July 1, 2007 . https://web.archive.org/web/20070617215647/http://calder.med.miami.edu/Ralph_Millard/biography.html . June 17, 2007. at miami.edu
  60. Barillas I, Dec W, Warren SM, Cutting CB, Grayson BH . Nasoalveolar molding improves long-term nasal symmetry in complete unilateral cleft lip-cleft palate patients . Plastic and Reconstructive Surgery . 123 . 3 . 1002–1006 . March 2009 . 19319066 . 10.1097/PRS.0b013e318199f46e . 24514123 .
  61. Maillard S, Retrouvey JM, Ahmed MK, Taub PJ . Correlation between Nasoalveolar Molding and Surgical, Aesthetic, Functional and Socioeconomic Outcomes Following Primary Repair Surgery: a Systematic Review . Journal of Oral & Maxillofacial Research . 8 . 3 . e2 . September 30, 2017 . 29142654 . 5676312 . 10.5037/jomr.2017.8302 .
  62. Book: Gill DS, Naini FB . Orthodontics: Principles and Practice. 2011. 257.
  63. Fukuyama E, Omura S, Fujita K, Soma K, Torikai K . Excessive rapid palatal expansion with Latham appliance for distal repositioning of protruded premaxilla in bilateral cleft lip and alveolus . The Cleft Palate-Craniofacial Journal . 43 . 6 . 673–677 . November 2006 . 17105324 . 10.1597/05-109 . 34126577 .
  64. Kloukos D, Fudalej P, Sequeira-Byron P, Katsaros C . Maxillary distraction osteogenesis versus orthognathic surgery for cleft lip and palate patients . The Cochrane Database of Systematic Reviews . 8 . 8 . CD010403 . August 2018 . 30095853 . 6513261 . 10.1002/14651858.CD010403.pub3 .
  65. Nasser M, Fedorowicz Z, Newton JT, Nouri M . Interventions for the management of submucous cleft palate . The Cochrane Database of Systematic Reviews . 1 . CD006703 . January 2008 . 18254111 . 10.1002/14651858.CD006703.pub2 . Nasser M .
  66. Book: Steele D, Adam GP, Di M, Halladay C, Pan I, Coppersmith N, Balk EM, Trikalinos TA . Tympanostomy Tubes in Children With Otitis Media. 2017. Agency for Healthcare Research and Quality (US). AHRQ Comparative Effectiveness Reviews. Rockville (MD). 28817250.
  67. Browning GG, Rovers MM, Williamson I, Lous J, Burton MJ . Grommets (ventilation tubes) for hearing loss associated with otitis media with effusion in children . The Cochrane Database of Systematic Reviews . 10 . CD001801 . October 2010 . 20927726 . 10.1002/14651858.CD001801.pub3 . 43568574 .
  68. Web site: 'ABM clinical protocol #18: guidelines for breastfeeding infants with cleft lip, cleft palate, or cleft lip and palate, revised 2013.', Academy of Breastfeeding Medicine. Reilly S, Reid J, Skeat J, Cahir P, Mei C, Bunik M. 2013.
  69. Matsunaka E, Ueki S, Makimoto K . Impact of breastfeeding or bottle-feeding on surgical wound dehiscence after cleft lip repair in infants: a systematic review protocol . en-US . JBI Database of Systematic Reviews and Implementation Reports . 13 . 10 . 3–11 . October 2015 . 26571277 . 10.11124/jbisrir-2015-2336 . 45396841 .
  70. Bessell A, Hooper L, Shaw WC, Reilly S, Reid J, Glenny AM . Feeding interventions for growth and development in infants with cleft lip, cleft palate or cleft lip and palate . The Cochrane Database of Systematic Reviews . 2011 . 2 . CD003315 . February 2011 . 21328261 . 10.1002/14651858.cd003315 . John Wiley & Sons, Ltd . free . 10072/172084 .
  71. Duarte GA, Ramos RB, Cardoso MC . Feeding methods for children with cleft lip and/or palate: a systematic review . Brazilian Journal of Otorhinolaryngology . 82 . 5 . 602–609 . September 1, 2016 . 26997574 . 9444722 . 10.1016/j.bjorl.2015.10.020 . free .
  72. Scalzone A, Flores-Mir C, Carozza D, d'Apuzzo F, Grassia V, Perillo L . Secondary alveolar bone grafting using autologous versus alloplastic material in the treatment of cleft lip and palate patients: systematic review and meta-analysis . Progress in Orthodontics . 20 . 1 . 6 . February 2019 . 30740615 . 6369233 . 10.1186/s40510-018-0252-y . free .
  73. Hodgkinson PD, Brown S, Duncan D, Grant C, McNaughton AM, Thomas P . February 2005. Fetal and Maternal Medicine Review. en. 16. 1. 1–27. 10.1017/S0965539505001452. 1469-5065. Management of Children with Cleft Lip and Palate: A Review Describing the Application of Multidisciplinary Team Working in This Condition Based Upon the Experiences of a Regional Cleft Lip and Palate Centre in the United Kingdom. 10.1.1.483.9042. 36404355 .
  74. Web site: ICHOM | Cleft Lip & Palate Standard Set | Measuring Outcomes.
  75. Allori AC, Kelley T, Meara JG, Albert A, Bonanthaya K, Chapman K, Cunningham M, Daskalogiannakis J, de Gier H, Heggie AA, Hernandez C, Jackson O, Jones Y, Kangesu L, Koudstaal MJ, Kuchhal R, Lohmander A, Long RE, Magee L, Monson L, Rose E, Sitzman TJ, Taylor JA, Thorburn G, van Eeden S, Williams C, Wirthlin JO, Wong KW . A Standard Set of Outcome Measures for the Comprehensive Appraisal of Cleft Care . The Cleft Palate-Craniofacial Journal . 54 . 5 . 540–554 . September 2017 . 27223626 . 10.1597/15-292 . 43371901 .
  76. Web site: Prevalence of Cleft Lip & Cleft Palate National Institute of Dental and Craniofacial Research. www.nidcr.nih.gov. August 2, 2019.
  77. See Web site: Who is affected by cleft lip and cleft palate. https://web.archive.org/web/20080330201247/http://www.webmd.com/hw-popup/who-is-affected-by-cleft-lip-and-cleft-palate. March 30, 2008. dead. June 20, 2008.
  78. Cervenka J, Shapiro BL . Cleft uvula in Chippewa Indians: prevalence and genetics . Human Biology . 42 . 1 . 47–52 . February 1970 . 5445084 .
  79. Rivron RP . Bifid uvula: prevalence and association in otitis media with effusion in children admitted for routine otolaryngological operations . The Journal of Laryngology and Otology . 103 . 3 . 249–252 . March 1989 . 2784825 . 10.1017/S002221510010862X . 32750501 .
  80. Dobson R . Review of abortion law demanded after abortion for cleft palate . BMJ . 327 . 7426 . 1250 . November 2003 . 14644964 . 1126893 . 10.1136/bmj.327.7426.1250-c .
  81. Hill, Amelia. "MPs bring bill to ban late abortions for cleft lip, cleft palate and clubfoot," The Guardian, 2020.
  82. News: Allison R . 2003-12-02 . Does a cleft palate justify an abortion? Curate wins right to challenge doctors . 2024-09-13 . The Guardian . en-GB . 0261-3077.
  83. Web site: VanderArk S . The Harry Potter Lexicon . Edits and Changes to the Text of CS . June 6, 2017 . September 12, 2020.
  84. Web site: Harfield TD . The Monster Without: Red Dragon, the Cleft-Lip, and the Politics of Recognition. https://web.archive.org/web/20140221114051/http://www.inter-disciplinary.net/ptb/mso/hid/hid5/harfield%20paper.pdf. dead. February 21, 2014. February 5, 2014.
  85. Web site: Plante . Chris . When I asked about Rage 2's worst character, I got an unexpected response . . June 14, 2018 . May 15, 2019.
  86. Web site: Plante C . Rage 2 is a fun game that makes me feel like garbage . . May 13, 2019 . May 15, 2019.
  87. Web site: Once a Knight: The legendary man, Mr. Byrd. June 8, 2012. Nico Van Thyn. nvanthyn.blogsport.com. April 22, 2016. live. https://web.archive.org/web/20161005230528/http://nvanthyn.blogspot.com/2012/06/legendary-man-mr-byrd.html. October 5, 2016.
  88. Book: Tanner KH . Doc Holliday: A Family Portrait . University of Omaha Press . 1998 . 978-0-8061-3036-1 .
  89. Web site: King Tut Not Murdered Violently, CT Scans Show . July 1, 2007 . dead . https://web.archive.org/web/20070703110802/http://news.nationalgeographic.com/news/2005/03/0308_050308_kingtutmurder_2.html . July 3, 2007 .
  90. Bloodfeud: Murder and Revenge in Anglo-Saxon England, Richard Fletcher
  91. Web site: Tad Lincoln: The Not-so-Famous Son of A Most-Famous President . July 1, 2007 . HistoryBuff.com . dead . https://web.archive.org/web/20070927202516/http://www.historybuff.com/library/reftad.html . September 27, 2007 .
  92. Web site: Carmit Bachar, smile ambassador . October 13, 2007 . dead . https://web.archive.org/web/20071030101905/http://www.buddytv.com/articles/pussycat-dolls-present-the-search-for-the-next-doll/pussycat-dolls-carmit-bachar-i-12393.aspx . October 30, 2007 .
  93. Beverley Lyons, October 16, 2006. Carmite Doing Her Bit For Charity . The Daily Record
  94. Web site: Jurgen Habermas . December 18, 2008 .
  95. Web site: Chat To Ljubo...LIVE . May 28, 2009 . December 23, 2009 . live . https://web.archive.org/web/20090531131747/http://au.fourfourtwo.com/news/104299,chat-to-ljubolive.aspx . May 31, 2009 .
  96. Web site: Stacy Keach . July 1, 2007 . Cleft Palate Foundation . dead . https://web.archive.org/web/20070213082319/http://www.cleftline.org/story_of_the_month/oct02 . February 13, 2007 .
  97. Web site: Cheech Marin . July 1, 2007 . Cleft Palate Foundation .
  98. News: Schmitt is face of West Va. toughness| USA Today . November 4, 2006 . Whiteside K . April 30, 2010 . live . https://web.archive.org/web/20091015000326/http://www.usatoday.com/sports/college/football/bigeast/2006-11-01-wvu-schmitt_x.htm . October 15, 2009 .
  99. Web site: Famous People with a Cleft. April 5, 2008. live. https://archive.today/20130121175545/http://www.disabled-world.com/artman/publish/famous-cleft.shtml. January 21, 2013.
  100. Web site: Who's That Guy? Dario Saric!. September 3, 2014. live. https://web.archive.org/web/20140822040922/http://grantland.com/the-triangle/whos-that-guy-dario-saric/. August 22, 2014.
  101. Book: MacEwen A . Antoinette Bourignon, Quietist. 27. 1910. Hodder and Stoughton. London. May 15, 2015. live. https://web.archive.org/web/20150206150156/https://archive.org/details/antoinettebourig00maceuoft. February 6, 2015.
  102. Web site: Cartwright G . He Was Born With a Cleft Lip . POPSUGAR Celebrity UK . May 15, 2019 . September 30, 2017 . June 30, 2019 . https://web.archive.org/web/20190630163411/https://www.popsugar.co.uk/celebrity/photo-gallery/43980443/image/43980445/He-Born-Cleft-Lip . dead .
  103. News: Bartels G . Franz Rogowski im Porträt – Schönheit des Makels . Der Tagesspiegel Online . February 6, 2021 . February 18, 2018 . de . Dass ihm, der Hasenscharte, dem Lispeln und der hellen Stimme wegen auf der Bühne Grenzen gesetzt sind, ist ihm klar..
  104. Book: Ettinger SJ, Feldman EC . Textbook of Veterinary Internal Medicine. 4th. W.B. Saunders Company. 1995. 978-0-7216-6795-9.
  105. Web site: Rodriguez Garcia JF . Surgery of the Soft and Hard Palate . Proceedings of the North American Veterinary Conference . 2006 . April 28, 2007 .
  106. Web site: Semevolos SA, Ducharme N . Surgical Repair of Congenital Cleft Palate in Horses: Eight Cases (1979–1997) . Proceedings of the American Association of Equine Practitioners . 1998 . April 28, 2007 . live . https://web.archive.org/web/20070929094038/http://www.ivis.org/proceedings/AAEP/1998/Semevolo.pdf . September 29, 2007 .
  107. Web site: Mouth . The Merck Veterinary Manual . 2006 . April 28, 2007 . live . https://web.archive.org/web/20070929135734/http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm%2Fbc%2F20202.htm . September 29, 2007 .
  108. Web site: Beasley, V.. 1999. Teratogenic Agents. Veterinary Toxicology. April 28, 2007. live. https://web.archive.org/web/20040920044729/http://www.ivis.org/advances/Beasley/cpt8a/chapter_frm.asp?LA=1&table=1. September 20, 2004.
  109. Lee JI, Kim YS, Kim MJ, Lee J, Choi JH, Yeom DB, Park JM, Hong SH . Application of a temporary palatal prosthesis in a puppy suffering from cleft palate . Journal of Veterinary Science . 7 . 1 . 93–95 . March 2006 . 16434860 . 3242096 . 10.4142/jvs.2006.7.1.93 .
  110. Griffiths LG, Sullivan M . Bilateral overlapping mucosal single-pedicle flaps for correction of soft palate defects . Journal of the American Animal Hospital Association . 37 . 2 . 183–186 . 2001 . 11300527 . 10.5326/15473317-37-2-183 .