In mathematics, the classification of finite simple groups (popularly called the enormous theorem[1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups). The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.
Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers (the natural number/s 0 and/or 1 cannot be built from the primes). The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non-isomorphic groups with the same composition series or, put in another way, the extension problem does not have a unique solution.
Daniel Gorenstein (1923-1992), Richard Lyons, and Ronald Solomon are gradually publishing a simplified and revised version of the proof.
See main article: List of finite simple groups.
The classification theorem has applications in many branches of mathematics, as questions about the structure of finite groups (and their action on other mathematical objects) can sometimes be reduced to questions about finite simple groups. Thanks to the classification theorem, such questions can sometimes be answered by checking each family of simple groups and each sporadic group.
Daniel Gorenstein announced in 1983 that the finite simple groups had all been classified, but this was premature as he had been misinformed about the proof of the classification of quasithin groups. The completed proof of the classification was announced by after Aschbacher and Smith published a 1221-page proof for the missing quasithin case.
wrote two volumes outlining the low rank and odd characteristic part of the proof, and wrote a 3rd volume covering the remaining characteristic 2 case. The proof can be broken up into several major pieces as follows:
The simple groups of low 2-rank are mostly groups of Lie type of small rank over fields of odd characteristic, together with five alternating and seven characteristic 2 type and nine sporadic groups.
The simple groups of small 2-rank include:
The classification of groups of small 2-rank, especially ranks at most 2, makes heavy use of ordinary and modular character theory, which is almost never directly used elsewhere in the classification.
All groups not of small 2 rank can be split into two major classes: groups of component type and groups of characteristic 2 type. This is because if a group has sectional 2-rank at least 5 then MacWilliams showed that its Sylow 2-subgroups are connected, and the balance theorem implies that any simple group with connected Sylow 2-subgroups is either of component type or characteristic 2 type. (For groups of low 2-rank the proof of this breaks down, because theorems such as the signalizer functor theorem only work for groups with elementary abelian subgroups of rank at least 3.)
A group is said to be of component type if for some centralizer C of an involution, C/O(C) has a component (where O(C) is the core of C, the maximal normal subgroup of odd order).These are more or less the groups of Lie type of odd characteristic of large rank, and alternating groups, together with some sporadic groups.A major step in this case is to eliminate the obstruction of the core of an involution. This is accomplished by the B-theorem, which states that every component of C/O(C) is the image of a component of C.
The idea is that these groups have a centralizer of an involution with a component that is a smaller quasisimple group, which can be assumed to be already known by induction. So to classify these groups one takes every central extension of every known finite simple group, and finds all simple groups with a centralizer of involution with this as a component. This gives a rather large number of different cases to check: there are not only 26 sporadic groups and 16 families of groups of Lie type and the alternating groups, but also many of the groups of small rank or over small fields behave differently from the general case and have to be treated separately, and the groups of Lie type of even and odd characteristic are also quite different.
A group is of characteristic 2 type if the generalized Fitting subgroup F*(Y) of every 2-local subgroup Y is a 2-group.As the name suggests these are roughly the groups of Lie type over fields of characteristic 2, plus a handful of others that are alternating or sporadic or of odd characteristic. Their classification is divided into the small and large rank cases, where the rank is the largest rank of an odd abelian subgroup normalizing a nontrivial 2-subgroup, which is often (but not always) the same as the rank of a Cartan subalgebra when the group is a group of Lie type in characteristic 2.
The rank 1 groups are the thin groups, classified by Aschbacher, and the rank 2 ones are the notorious quasithin groups, classified by Aschbacher and Smith. These correspond roughly to groups of Lie type of ranks 1 or 2 over fields of characteristic 2.
Groups of rank at least 3 are further subdivided into 3 classes by the trichotomy theorem, proved by Aschbacher for rank 3 and by Gorenstein and Lyons for rank at least 4.The three classes are groups of GF(2) type (classified mainly by Timmesfeld), groups of "standard type" for some odd prime (classified by the Gilman–Griess theorem and work by several others), and groups of uniqueness type, where a result of Aschbacher implies that there are no simple groups.The general higher rank case consists mostly of the groups of Lie type over fields of characteristic 2 of rank at least 3 or 4.
The main part of the classification produces a characterization of each simple group. It is then necessary to check that there exists a simple group for each characterization and that it is unique. This gives a large number of separate problems; for example, the original proofs of existence and uniqueness of the monster group totaled about 200 pages, and the identification of the Ree groups by Thompson and Bombieri was one of the hardest parts of the classification. Many of the existence proofs and some of the uniqueness proofs for the sporadic groups originally used computer calculations, most of which have since been replaced by shorter hand proofs.
In 1972 announced a program for completing the classification of finite simple groups, consisting of the following 16 steps:
Many of the items in the table below are taken from . The date given is usually the publication date of the complete proof of a result, which is sometimes several years later than the proof or first announcement of the result, so some of the items appear in the "wrong" order.
Date | Development | |
1832 | Galois introduces normal subgroups and finds the simple groups An (n ≥ 5) and PSL2(Fp) (p ≥ 5) | |
1854 | Cayley defines abstract groups | |
1861 | Mathieu describes the first two Mathieu groups M11, M12, the first sporadic simple groups, and announces the existence of M24. | |
1870 | Jordan lists some simple groups: the alternating and projective special linear ones, and emphasizes the importance of the simple groups. | |
1872 | Sylow proves the Sylow theorems | |
1873 | Mathieu introduces three more Mathieu groups M22, M23, M24. | |
1892 | Hölder proves that the order of any nonabelian finite simple group must be a product of at least four (not necessarily distinct) primes, and asks for a classification of finite simple groups. | |
1893 | Cole classifies simple groups of order up to 660 | |
1896 | Frobenius and Burnside begin the study of character theory of finite groups. | |
1899 | Burnside classifies the simple groups such that the centralizer of every involution is a non-trivial elementary abelian 2-group. | |
1901 | Frobenius proves that a Frobenius group has a Frobenius kernel, so in particular is not simple. | |
1901 | Dickson defines classical groups over arbitrary finite fields, and exceptional groups of type G2 over fields of odd characteristic. | |
1901 | Dickson introduces the exceptional finite simple groups of type E6. | |
1904 | Burnside uses character theory to prove Burnside's theorem that the order of any non-abelian finite simple group must be divisible by at least 3 distinct primes. | |
1905 | Dickson introduces simple groups of type G2 over fields of even characteristic | |
1911 | Burnside conjectures that every non-abelian finite simple group has even order | |
1928 | Hall proves the existence of Hall subgroups of solvable groups | |
1933 | Hall begins his study of p-groups | |
1935 | Brauer begins the study of modular characters. | |
1936 | Zassenhaus classifies finite sharply 3-transitive permutation groups | |
1938 | Fitting introduces the Fitting subgroup and proves Fitting's theorem that for solvable groups the Fitting subgroup contains its centralizer. | |
1942 | Brauer describes the modular characters of a group divisible by a prime to the first power. | |
1954 | Brauer classifies simple groups with GL2(Fq) as the centralizer of an involution. | |
1955 | The Brauer–Fowler theorem implies that the number of finite simple groups with given centralizer of involution is finite, suggesting an attack on the classification using centralizers of involutions. | |
1955 | Chevalley introduces the Chevalley groups, in particular introducing exceptional simple groups of types F4, E7, and E8. | |
1956 | The Hall–Higman theorem describes the possibilities for the minimal polynomial of an element of prime power order for a representation of a p-solvable group. | |
1957 | Suzuki shows that all finite simple CA groups of odd order are cyclic. | |
1958 | The Brauer–Suzuki–Wall theorem characterizes the projective special linear groups of rank 1, and classifies the simple CA groups. | |
1959 | Steinberg introduces the Steinberg groups, giving some new finite simple groups, of types 3D4 and 2E6 (the latter were independently found at about the same time by Tits). | |
1959 | The Brauer–Suzuki theorem about groups with generalized quaternion Sylow 2-subgroups shows in particular that none of them are simple. | |
1960 | Thompson proves that a group with a fixed-point-free automorphism of prime order is nilpotent. | |
1960 | Feit, Marshall Hall, and Thompson show that all finite simple CN groups of odd order are cyclic. | |
1960 | Suzuki introduces the Suzuki groups, with types 2B2. | |
1961 | Ree introduces the Ree groups, with types 2F4 and 2G2. | |
1963 | Feit and Thompson prove the odd order theorem. | |
1964 | Tits introduces BN pairs for groups of Lie type and finds the Tits group | |
1965 | The Gorenstein–Walter theorem classifies groups with a dihedral Sylow 2-subgroup. | |
1966 | Glauberman proves the Z* theorem | |
1966 | Janko introduces the Janko group J1, the first new sporadic group for about a century. | |
1968 | Glauberman proves the ZJ theorem | |
1968 | Higman and Sims introduce the Higman–Sims group | |
1968 | Conway introduces the Conway groups | |
1969 | Walter's theorem classifies groups with abelian Sylow 2-subgroups | |
1969 | Introduction of the Suzuki sporadic group, the Janko group J2, the Janko group J3, the McLaughlin group, and the Held group. | |
1969 | Gorenstein introduces signalizer functors based on Thompson's ideas. | |
1970 | MacWilliams shows that the 2-groups with no normal abelian subgroup of rank 3 have sectional 2-rank at most 4. (The simple groups with Sylow subgroups satisfying the latter condition were later classified by Gorenstein and Harada.) | |
1970 | Bender introduced the generalized Fitting subgroup | |
1970 | The Alperin–Brauer–Gorenstein theorem classifies groups with quasi-dihedral or wreathed Sylow 2-subgroups, completing the classification of the simple groups of 2-rank at most 2 | |
1971 | Fischer introduces the three Fischer groups | |
1971 | Thompson classifies quadratic pairs | |
1971 | Bender classifies group with a strongly embedded subgroup | |
1972 | Gorenstein proposes a 16-step program for classifying finite simple groups; the final classification follows his outline quite closely. | |
1972 | Lyons introduces the Lyons group | |
1973 | Rudvalis introduces the Rudvalis group | |
1973 | Fischer discovers the baby monster group (unpublished), which Fischer and Griess use to discover the monster group, which in turn leads Thompson to the Thompson sporadic group and Norton to the Harada–Norton group (also found in a different way by Harada). | |
1974 | Thompson classifies N-groups, groups all of whose local subgroups are solvable. | |
1974 | The Gorenstein–Harada theorem classifies the simple groups of sectional 2-rank at most 4, dividing the remaining finite simple groups into those of component type and those of characteristic 2 type. | |
1974 | Tits shows that groups with BN pairs of rank at least 3 are groups of Lie type | |
1974 | Aschbacher classifies the groups with a proper 2-generated core | |
1975 | Gorenstein and Walter prove the L-balance theorem | |
1976 | Glauberman proves the solvable signalizer functor theorem | |
1976 | Aschbacher proves the component theorem, showing roughly that groups of odd type satisfying some conditions have a component in standard form. The groups with a component of standard form were classified in a large collection of papers by many authors. | |
1976 | O'Nan introduces the O'Nan group | |
1976 | Janko introduces the Janko group J4, the last sporadic group to be discovered | |
1977 | Aschbacher characterizes the groups of Lie type of odd characteristic in his classical involution theorem. After this theorem, which in some sense deals with "most" of the simple groups, it was generally felt that the end of the classification was in sight. | |
1978 | Timmesfeld proves the O2 extraspecial theorem, breaking the classification of groups of GF(2)-type into several smaller problems. | |
1978 | Aschbacher classifies the thin finite groups, which are mostly rank 1 groups of Lie type over fields of even characteristic. | |
1981 | Bombieri uses elimination theory to complete Thompson's work on the characterization of Ree groups, one of the hardest steps of the classification. | |
1982 | McBride proves the signalizer functor theorem for all finite groups. | |
1982 | Griess constructs the monster group by hand | |
1983 | The Gilman–Griess theorem classifies groups of characteristic 2 type and rank at least 4 with standard components, one of the three cases of the trichotomy theorem. | |
1983 | Aschbacher proves that no finite group satisfies the hypothesis of the uniqueness case, one of the three cases given by the trichotomy theorem for groups of characteristic 2 type. | |
1983 | Gorenstein and Lyons prove the trichotomy theorem for groups of characteristic 2 type and rank at least 4, while Aschbacher does the case of rank 3. This divides these groups into 3 subcases: the uniqueness case, groups of GF(2) type, and groups with a standard component. | |
1983 | Gorenstein announces the proof of the classification is complete, somewhat prematurely as the proof of the quasithin case was incomplete. | |
1985 | Conway, Curtis, Norton, Parker, Wilson and Thackray publish the Atlas of Finite Groups with basic information about 93 finite simple groups. | |
1994 | Gorenstein, Lyons, and Solomon begin publication of the revised classification | |
2004 | Aschbacher and Smith publish their work on quasithin groups (which are mostly groups of Lie type of rank at most 2 over fields of even characteristic), filling the last gap in the classification known at that time. | |
2008 | Harada and Solomon fill a minor gap in the classification by describing groups with a standard component that is a cover of the Mathieu group M22, a case that was accidentally omitted from the proof of the classification due to an error in the calculation of the Schur multiplier of M22. | |
2012 | Gonthier and collaborators announce a computer-checked version of the Feit–Thompson theorem using the Coq proof assistant.[3] |
The proof of the theorem, as it stood around 1985 or so, can be called first generation. Because of the extreme length of the first generation proof, much effort has been devoted to finding a simpler proof, called a second-generation classification proof. This effort, called "revisionism", was originally led by Daniel Gorenstein.
, ten volumes of the second generation proof have been published (Gorenstein, Lyons & Solomon 1994, 1996, 1998, 1999, 2002, 2005, 2018a, 2018b; & Capdeboscq, 2021, 2023). In 2012 Solomon estimated that the project would need another 5 volumes, but said that progress on them was slow. It is estimated that the new proof will eventually fill approximately 5,000 pages. (This length stems in part from the second generation proof being written in a more relaxed style.) However, with the publication of volume 9 of the GLS series, and including the Aschbacher–Smith contribution, this estimate was already reached, with several more volumes still in preparation (the rest of what was originally intended for volume 9, plus projected volumes 10 and 11). Aschbacher and Smith wrote their two volumes devoted to the quasithin case in such a way that those volumes can be part of the second generation proof.
Gorenstein and his collaborators have given several reasons why a simpler proof is possible.
has called the work on the classification problem by Ulrich Meierfrankenfeld, Bernd Stellmacher, Gernot Stroth, and a few others, a third generation program. One goal of this is to treat all groups in characteristic 2 uniformly using the amalgam method.
Gorenstein has discussed some of the reasons why there might not be a short proof of the classification similar to the classification of compact Lie groups.
This section lists some results that have been proved using the classification of finite simple groups.