Bacterial small RNA explained
Bacterial small RNAs are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops.[1] [2] Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq[3] in a number of bacterial species including Escherichia coli,[4] [5] [6] the model pathogen Salmonella,[7] the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti,[8] marine cyanobacteria,[9] Francisella tularensis (the causative agent of tularaemia),[10] Streptococcus pyogenes[11] , the pathogen Staphylococcus aureus[12] , and the plant pathogen Xanthomonas oryzae pathovar oryzae.[13] Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.
Origin
In the 1960s, the abbreviation sRNA was used to refer to "soluble RNA," which is now known as transfer RNA or tRNA (for an example of the abbreviation used in this sense, see[14]). It is now known that most bacterial sRNAs are encoded by free-standing genes located in the intergenic regions (IGR) between two known genes.[3] [6] However, a class of sRNAs are shown to be derived from the 3'-UTR of mRNAs by independent transcription or nucleolytic cleavage.[15]
The first bacterial sRNA was discovered and characterized in 1984.[16] MicF in E. coli was found to regulate the expression of a key structural gene that makes up the outer membrane of the E. coli cell.[17] Shortly after, the Staphylococcus aureus sRNA RNAIII was found to act as a global regulator of S. aureus virulence and toxin secretion. Since these initial discoveries, over six thousand bacterial sRNAs have been identified, largely through RNA-sequencing experiments.
Techniques
Several laboratory and bioinformatic techniques can be used to identify and characterize sRNA transcripts.
- RNA-sequencing, or RNA-seq, is used to analyze expression levels of all transcripts in a genome, including sRNAs.[18]
- Microarrays use complementary DNA probes to bind to possible sRNA loci in intergenic regions.
- Northern blotting can reveal possible sRNA transcript size and expression levels by running a mixed RNA sample on an agarose gel and probing for a desired sRNA.
- Target prediction software can predict possible interactions between sRNAs and mRNA by finding regions of complementarity within sRNA and mRNA target sequences.
- RNase crosslinking can experimentally validate sRNA and mRNA interactions by crosslinking a sRNA and its target with UV light, along with RNase enzymes that are also usually involved in the interaction. The sRNA:mRNA hybrid can then be isolated and analyzed.[19]
Function
Bacterial sRNAs have a wide variety of regulatory mechanisms. Generally, sRNAs can bind to protein targets and modify the function of the bound protein. Alternately, sRNAs may interact with mRNA targets and regulate gene expression by binding to complementary mRNA and blocking translation, or by unmasking or blocking the ribosome-binding site.[20]
sRNAs that interact with mRNA can also be categorized as cis- or trans-acting. Cis-acting sRNAs interact with genes encoded on the same genetic locus as the sRNA.[21] Some cis-acting sRNAs act as riboswitches, which have receptors for specific environmental or metabolic signals and activate or repress genes based on these signals. Conversely, trans-encoded sRNAs interact with genes on separate loci.
House-keeping
Amongst the targets of sRNAs are a number of house-keeping genes. The 6S RNA binds to RNA polymerase and regulates transcription, tmRNA has functions in protein synthesis, including the recycling of stalled ribosomes, 4.5S RNA regulates signal recognition particle (SRP), which is required for the secretion of proteins and RNase P is involved in maturing tRNAs.[22] [23]
Stress response
Many sRNAs are involved in stress response regulation.[24] They are expressed under stress conditions such as cold shock, iron depletion, onset of the SOS response and sugar stress. The small RNA ryfA has been found to affect the stress response of uropathogenic E.coli, under osmotic and oxidative stress.[25] The small RNA nitrogen stress-induced RNA 1 (NsiR1) is produced by Cyanobacteria under conditions of nitrogen deprivation.[26] Cyanobacteria NisR8 and NsiR9 sRNAs could be related to the differentiation of nitrogen-fixing cells (heterocysts).[27]
Regulation of RpoS
The RpoS gene in E. coli encodes sigma 38, a sigma factor which regulates stress response and acts as a transcriptional regulator for many genes involved in cell adaptation. At least three sRNAs, DsrA, RprA and OxyS, regulate the translation of RpoS. DsrA and RprA both activate RpoS translation by base pairing to a region in the leader sequence of the RpoS mRNA and disrupting formation of a hairpin which frees up the ribosome loading site. OxyS inhibits RpoS translation. DsrA levels are increased in response to low temperatures and osmotic stress, and RprA levels are increased in response to osmotic stress and cell-surface stress, therefore increasing RpoS levels in response to these conditions. Levels of OxyS are increased in response to oxidative stress, therefore inhibiting RpoS under these conditions.[28] [29]
Regulation of outer membrane proteins
The outer membrane of gram negative bacteria acts as a barrier to prevent the entry of toxins into the bacterial cell, and plays a role in the survival of bacterial cells in diverse environments. Outer membrane proteins (OMPs) include porins and adhesins. Numerous sRNAs regulate the expression of OMPs. The porins OmpC and OmpF are responsible for the transport of metabolites and toxins. The expression of OmpC and OmpF is regulated by the sRNAs MicC and MicF in response to stress conditions.[30] [31] [32] The outer membrane protein OmpA anchors the outer membrane to the murein layer of the periplasmic space. Its expression is downregulated in the stationary phase of cell-growth. In E. coli the sRNA MicA depletes OmpA levels, in Vibrio cholerae the sRNA VrrA represses synthesis of OmpA in response to stress.[33]
Virulence
In some bacteria sRNAs regulate virulence genes. In Salmonella, the pathogenicity island encoded InvR RNA represses synthesis of the major outer membrane protein OmpD; another co-activated DapZ sRNA from 3'-UTR represses abundant membrane Opp/Dpp transporters of oligopeptides;[15] and SgrS sRNA regulates the expression of the secreted effector protein SopD.[7] In Staphylococcus aureus, RNAIII regulates a number of genes involved in toxin and enzyme production and cell-surface proteins. The FasX sRNA is the only well-characterized regulatory RNA known to control the regulation of several virulence factors in Streptococcus pyogenes, including both cell-surface associated adhesion proteins as well as secreted factors.[34] [35] [36] [37]
Quorum sensing
In Vibrio species, the Qrr sRNAs and the chaperone protein Hfq are involved in the regulation of quorum sensing. Qrr sRNAs regulate the expression of several mRNAs including the quorum-sensing master regulators LuxR and HapR.[38] [39]
See also: VqmR sRNA.
Biofilm Formation
Biofilm is a type of bacterial growth pattern where multiple layers of bacterial cells adhere to a host surface. This mode of growth is often found in pathogenic bacteria, including Pseudomonas aeruginosa, which can form persistent biofilm within the respiratory tract and cause chronic infection.[40] The P. aeruginosa sRNA SbrA was found to be necessary for full biofilm formation and pathogenicity. A mutant P. aeruginosa strain with SbrA deleted formed a 66% smaller biofilm and its ability to infect a nematode model was reduced by nearly half when compared to wildtype P. aeruginosa.
Antibiotic Resistance
Several bacterial sRNAs are involved in the regulation of genes that confer antibiotic resistance.[41] For example, the sRNA DsrA regulates a drug efflux pump in E. coli, which is a system that mechanically pumps antibiotic out of bacterial cells. E. coli MicF also contributes to antibiotic resistance of cephalosporins, as it regulates membrane proteins involved in uptake of these class of antibiotics.
Target prediction
In order to understand an sRNA's function one primarily needs to describe its targets. Here, target predictions represent a fast and free method for initial characterization of putative targets, given that the sRNA actually exerts its function via direct base pairing with a target RNA. Examples are CopraRNA,[42] [43] IntaRNA,[43] [44] [45] TargetRNA[46] and RNApredator.[47] It has been shown that target prediction for enterobacterial sRNAs can benefit from transcriptome wide Hfq-binding maps.[48]
Databases
- BSRD (kwanlab.bio.cuhk.edu.hk/BSRD) is a repository for published sRNA sequences with multiple annotations and expression profiles.[49]
- SRD (srd.genouest.org/) is a database of Staphylococcus aureus sRNAs with sequences, predicted structures, and genome start and end sites.[50]
- sRNAdb (http://srnadb.fb11.uni-giessen.de/sRNAdb) is a database of sRNAs from Gram-positive bacterial species with sequence annotation.[51]
See also
Notes and References
- Vogel J, Wagner EG . Target identification of small noncoding RNAs in bacteria . Current Opinion in Microbiology . 10 . 3 . 262–70 . June 2007 . 17574901 . 10.1016/j.mib.2007.06.001 .
- Viegas SC, Arraiano CM . Regulating the regulators: How ribonucleases dictate the rules in the control of small non-coding RNAs . RNA Biology . 5 . 4 . 230–43 . 2008 . 18981732 . 10.4161/rna.6915 . free .
- Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S . Identification of novel small RNAs using comparative genomics and microarrays . Genes & Development . 15 . 13 . 1637–51 . July 2001 . 11445539 . 312727 . 10.1101/gad.901001 .
- Hershberg R, Altuvia S, Margalit H . A survey of small RNA-encoding genes in Escherichia coli . Nucleic Acids Research . 31 . 7 . 1813–20 . April 2003 . 12654996 . 152812 . 10.1093/nar/gkg297 .
- Rivas E, Klein RJ, Jones TA, Eddy SR . Computational identification of noncoding RNAs in E. coli by comparative genomics . Current Biology . 11 . 17 . 1369–73 . September 2001 . 11553332 . 10.1016/S0960-9822(01)00401-8 . 5243194 . free .
- Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S . Novel small RNA-encoding genes in the intergenic regions of Escherichia coli . Current Biology . 11 . 12 . 941–50 . June 2001 . 11448770 . 10.1016/S0960-9822(01)00270-6 . free .
- Vogel J . A rough guide to the non-coding RNA world of Salmonella . Molecular Microbiology . 71 . 1 . 1–11 . January 2009 . 19007416 . 10.1111/j.1365-2958.2008.06505.x . 205366563 . 11858/00-001M-0000-000E-C124-A . free .
- Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A . 6 . A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti . BMC Genomics . 11 . 245 . April 2010 . 20398411 . 2873474 . 10.1186/1471-2164-11-245 . free .
- Axmann IM, Kensche P, Vogel J, Kohl S, Herzel H, Hess WR . Identification of cyanobacterial non-coding RNAs by comparative genome analysis . Genome Biology . 6 . 9 . R73 . 2005 . 16168080 . 1242208 . 10.1186/gb-2005-6-9-r73 . free .
- Postic G, Frapy E, Dupuis M, Dubail I, Livny J, Charbit A, Meibom KL . Identification of small RNAs in Francisella tularensis . BMC Genomics . 11 . 625 . November 2010 . 21067590 . 3091763 . 10.1186/1471-2164-11-625 . free .
- Tesorero RA, Yu N, Wright JO, Svencionis JP, Cheng Q, Kim JH, Cho KH . Novel regulatory small RNAs in Streptococcus pyogenes . PLOS ONE . 8 . 6 . e64021 . 2013-01-01 . 23762235 . 3675131 . 10.1371/journal.pone.0064021 . free . 2013PLoSO...864021T .
- Felden B, Vandenesch F, Bouloc P, Romby P . The Staphylococcus aureus RNome and its commitment to virulence . PLOS Pathogens . 7 . 3 . e1002006 . March 2011 . 21423670 . 3053349 . 10.1371/journal.ppat.1002006 . free .
- Liang H, Zhao YT, Zhang JQ, Wang XJ, Fang RX, Jia YT . Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae . BMC Genomics . 12 . 87 . January 2011 . 21276262 . 3039613 . 10.1186/1471-2164-12-87 . free .
- Crick FH . Codon--anticodon pairing: the wobble hypothesis . Journal of Molecular Biology . 19 . 2 . 548–55 . August 1966 . 5969078 . 10.1016/S0022-2836(66)80022-0 .
- Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J . An atlas of Hfq-bound transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs . The EMBO Journal . 31 . 20 . 4005–19 . October 2012 . 22922465 . 3474919 . 10.1038/emboj.2012.229 .
- Mizuno T, Chou MY, Inouye M . A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA) . Proc Natl Acad Sci U S A . 81 . 7 . 1966–70 . April 1984 . 6201848 . 345417 . 10.1073/pnas.81.7.1966 . free .
- Svensson SL, Sharma CM . Small RNAs in Bacterial Virulence and Communication . Microbiology Spectrum . 4 . 3 . 169–212 . June 2016 . 27337442 . 10.1128/microbiolspec.VMBF-0028-2015 .
- Kanniappan P, Ahmed SA, Rajasekaram G, Marimuthu C, Ch'ng ES, Lee LP, Raabe CA, Rozhdestvensky TS, Tang TH . 6 . RNomic identification and evaluation of npcTB_6715, a non-protein-coding RNA gene as a potential biomarker for the detection of Mycobacterium tuberculosis . Journal of Cellular and Molecular Medicine . 21 . 10 . 2276–2283 . October 2017 . 28756649 . 5618688 . 10.1111/jcmm.13148 .
- Waters SA, McAteer SP, Kudla G, Pang I, Deshpande NP, Amos TG, Leong KW, Wilkins MR, Strugnell R, Gally DL, Tollervey D, Tree JJ . 6 . Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E . The EMBO Journal . 36 . 3 . 374–387 . February 2017 . 27836995 . 5286369 . 10.15252/embj.201694639 .
- Waters LS, Storz G . Regulatory RNAs in bacteria . Cell . 136 . 4 . 615–28 . February 2009 . 19239884 . 3132550 . 10.1016/j.cell.2009.01.043 .
- Guillet J, Hallier M, Felden B . Emerging functions for the Staphylococcus aureus RNome . PLOS Pathogens . 9 . 12 . e1003767 . 2013 . 24348246 . 3861533 . 10.1371/journal.ppat.1003767 . free .
- Wassarman KM . 6S RNA: a small RNA regulator of transcription . Current Opinion in Microbiology . 10 . 2 . 164–8 . April 2007 . 17383220 . 10.1016/j.mib.2007.03.008 .
- Book: Hammann C, Nellen W . Small RNAs:: Analysis and Regulatory Functions (Nucleic Acids and Molecular Biology) . Springer . Berlin . 2005 . 978-3-540-28129-0 .
- Caswell CC, Oglesby-Sherrouse AG, Murphy ER . Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles . Frontiers in Cellular and Infection Microbiology . 4 . 151 . October 2014 . 25389522 . 4211561 . 10.3389/fcimb.2014.00151 . free .
- Bessaiah H, Pokharel P, Loucif H, Kulbay M, Sasseville C, Habouria H, Houle S, Bernier J, Massé É, Van Grevenynghe J, Dozois CM . 6 . The RyfA small RNA regulates oxidative and osmotic stress responses and virulence in uropathogenic Escherichia coli . PLOS Pathogens . 17 . 5 . e1009617 . May 2021 . 34043736 . 8205139 . 10.1371/journal.ppat.1009617 . Oswald E . free .
- Ionescu D, Voss B, Oren A, Hess WR, Muro-Pastor AM . Heterocyst-specific transcription of NsiR1, a non-coding RNA encoded in a tandem array of direct repeats in cyanobacteria . Journal of Molecular Biology . 398 . 2 . 177–88 . April 2010 . 20227418 . 10.1016/j.jmb.2010.03.010 . free . 10261/112252 .
- Brenes-Álvarez M, Olmedo-Verd E, Vioque A, Muro-Pastor AM . Identification of Conserved and Potentially Regulatory Small RNAs in Heterocystous Cyanobacteria . Frontiers in Microbiology . 7 . 48 . 2016-01-01 . 26870012 . 4734099 . 10.3389/fmicb.2016.00048 . free .
- Repoila F, Majdalani N, Gottesman S . Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm . Molecular Microbiology . 48 . 4 . 855–61 . May 2003 . 12753181 . 10.1046/j.1365-2958.2003.03454.x . free .
- Benjamin JA, Desnoyers G, Morissette A, Salvail H, Massé E . Dealing with oxidative stress and iron starvation in microorganisms: an overview . Canadian Journal of Physiology and Pharmacology . 88 . 3 . 264–72 . March 2010 . 20393591 . 10.1139/y10-014 .
- Vogel J, Papenfort K . Small non-coding RNAs and the bacterial outer membrane . Current Opinion in Microbiology . 9 . 6 . 605–11 . December 2006 . 17055775 . 10.1016/j.mib.2006.10.006 .
- Delihas N, Forst S . MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors . Journal of Molecular Biology . 313 . 1 . 1–12 . October 2001 . 11601842 . 10.1006/jmbi.2001.5029 .
- Chen S, Zhang A, Blyn LB, Storz G . MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli . Journal of Bacteriology . 186 . 20 . 6689–97 . October 2004 . 15466019 . 522180 . 10.1128/JB.186.20.6689-6697.2004 .
- Song T, Wai SN . A novel sRNA that modulates virulence and environmental fitness of Vibrio cholerae . RNA Biology . 6 . 3 . 254–8 . July 2009 . 19411843 . 10.4161/rna.6.3.8371 . free .
- Ramirez-Peña E, Treviño J, Liu Z, Perez N, Sumby P . The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript . Molecular Microbiology . 78 . 6 . 1332–47 . December 2010 . 21143309 . 3071709 . 10.1111/j.1365-2958.2010.07427.x .
- Liu Z, Treviño J, Ramirez-Peña E, Sumby P . The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus . Molecular Microbiology . 86 . 1 . 140–54 . October 2012 . 22882718 . 3456998 . 10.1111/j.1365-2958.2012.08178.x .
- Danger JL, Cao TN, Cao TH, Sarkar P, Treviño J, Pflughoeft KJ, Sumby P . The small regulatory RNA FasX enhances group A Streptococcus virulence and inhibits pilus expression via serotype-specific targets . Molecular Microbiology . 96 . 2 . 249–62 . April 2015 . 25586884 . 4390479 . 10.1111/mmi.12935 .
- Danger JL, Makthal N, Kumaraswami M, Sumby P . The FasX Small Regulatory RNA Negatively Regulates the Expression of Two Fibronectin-Binding Proteins in Group A Streptococcus . Journal of Bacteriology . 197 . 23 . 3720–30 . December 2015 . 26391206 . 4626899 . 10.1128/jb.00530-15 .
- Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL . The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae . Cell . 118 . 1 . 69–82 . July 2004 . 15242645 . 10.1016/j.cell.2004.06.009 . free .
- Bardill JP, Zhao X, Hammer BK . The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions . Molecular Microbiology . 80 . 5 . 1381–94 . June 2011 . 21453446 . 10.1111/j.1365-2958.2011.07655.x . free .
- Taylor PK, Van Kessel AT, Colavita A, Hancock RE, Mah TF . A novel small RNA is important for biofilm formation and pathogenicity in Pseudomonas aeruginosa . PLOS ONE . 12 . 8 . e0182582 . 2017 . 28771593 . 5542712 . 10.1371/journal.pone.0182582 . free . 2017PLoSO..1282582T .
- Dersch P, Khan MA, Mühlen S, Görke B . Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets . Frontiers in Microbiology . 8 . 803 . 2017 . 28529506 . 5418344 . 10.3389/fmicb.2017.00803 . free .
- Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J . 6 . Comparative genomics boosts target prediction for bacterial small RNAs . Proceedings of the National Academy of Sciences of the United States of America . 110 . 37 . E3487-96 . September 2013 . 23980183 . 3773804 . 10.1073/pnas.1303248110 . free . 2013PNAS..110E3487W .
- Wright PR, Georg J, Mann M, Sorescu DA, Richter AS, Lott S, Kleinkauf R, Hess WR, Backofen R . 6 . CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains . Nucleic Acids Research . 42 . Web Server issue . W119-23 . July 2014 . 24838564 . 4086077 . 10.1093/nar/gku359 . 10.1.1.641.51 .
- Busch A, Richter AS, Backofen R . IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions . Bioinformatics . 24 . 24 . 2849–56 . December 2008 . 18940824 . 2639303 . 10.1093/bioinformatics/btn544 .
- Mann M, Wright PR, Backofen R . IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions . Nucleic Acids Research . 45 . W1 . W435–W439 . July 2017 . 28472523 . 5570192 . 10.1093/nar/gkx279 .
- Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G . Target prediction for small, noncoding RNAs in bacteria . Nucleic Acids Research . 34 . 9 . 2791–802 . 2006 . 16717284 . 1464411 . 10.1093/nar/gkl356 .
- Eggenhofer F, Tafer H, Stadler PF, Hofacker IL . RNApredator: fast accessibility-based prediction of sRNA targets . Nucleic Acids Research . 39 . Web Server issue . W149-54 . July 2011 . 21672960 . 3125805 . 10.1093/nar/gkr467 .
- Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J . 6 . Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo . The EMBO Journal . 35 . 9 . 991–1011 . May 2016 . 27044921 . 5207318 . 10.15252/embj.201593360 .
- Li L, Huang D, Cheung MK, Nong W, Huang Q, Kwan HS . BSRD: a repository for bacterial small regulatory RNA . Nucleic Acids Research . 41 . Database issue . D233-8 . January 2013 . 23203879 . 3531160 . 10.1093/nar/gks1264 .
- Sassi M, Augagneur Y, Mauro T, Ivain L, Chabelskaya S, Hallier M, Sallou O, Felden B . 6 . SRD: a Staphylococcus regulatory RNA database . RNA . 21 . 5 . 1005–17 . May 2015 . 25805861 . 4408781 . 10.1261/rna.049346.114 .
- Pischimarov J, Kuenne C, Billion A, Hemberger J, Cemič F, Chakraborty T, Hain T . sRNAdb: a small non-coding RNA database for gram-positive bacteria . BMC Genomics . 13 . 384 . August 2012 . 22883983 . 3439263 . 10.1186/1471-2164-13-384 . free .