Complex analytic variety explained
In mathematics, in particular differential geometry and complex geometry, a complex analytic variety[1] or complex analytic space is a generalization of a complex manifold that allows the presence of singularities. Complex analytic varieties are locally ringed spaces that are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.
Definition
Denote the constant sheaf on a topological space with value
by
}. A
-space is a
locally ringed space
, whose
structure sheaf is an
algebra over
}.
Choose an open subset
of some
complex affine space
, and fix finitely many holomorphic functions
in
. Let
be the common vanishing locus of these holomorphic functions, that is,
X=\{x\midf1(x)= … =fk(x)=0\}
. Define a sheaf of rings on
by letting
be the restriction to
of
, where
is the sheaf of holomorphic functions on
. Then the locally ringed
-space
is a
local model space.
A complex analytic variety is a locally ringed
-space
that is locally isomorphic to a local model space.
Morphisms of complex analytic varieties are defined to be morphisms of the underlying locally ringed spaces, they are also called holomorphic maps. A structure sheaf may have nilpotent element,and also, when the complex analytic space whose structure sheaf is reduced, then the complex analytic space is reduced, that is, the complex analytic space may not be reduced.
An associated complex analytic space (variety)
is such that;
Let X be schemes finite type over
, and cover X with open affine subset
(
) (
Spectrum of a ring). Then each
is an algebra of finite type over
, and
Ai\simeqC[z1,...,zn]/(f1,...,fm)
. Where
are polynomial in
, which can be regarded as a holomorphic function on
. Therefore, their common zero of the set is the complex analytic subspace
. Here, scheme X obtained by
glueing the data of the set
, and then the same data can be used to glueing the complex analytic space
into an complex analytic space
, so we call
a associated complex analytic space with X. The complex analytic space X is reduced if and only if the associated complex analytic space
reduced.
[2] See also
- Algebraic variety - Roughly speaking, an (complex) analytic variety is a zero locus of a set of an (complex) analytic function, while an algebraic variety is a zero locus of a set of a polynomial function and allowing singular point.
References
- Book: 978-4-431-49822-3. [{{Google books|title=Complex Analytic Desingularization|rw92DwAAQBAJ|page=6|plainurl=yes}} Complex Analytic Desingularization]. Aroca. José Manuel. Hironaka. Heisuke. Vicente. José Luis. 3 November 2018. 10.1007/978-4-431-49822-3.
- 10.1007/BF01425536. De Rham cohomology of an analytic space. 1969. Bloom. Thomas. Herrera. Miguel. Inventiones Mathematicae. 7. 4. 275–296. 1969InMat...7..275B. 122113902.
- Web site: Cartan . H. . Henri Cartan. Bruhat . F. . Cerf . Jean. . Dolbeault . P. . Frenkel . Jean. . Hervé . Michel . Malatian. . Serre . J-P. . Séminaire Henri Cartan, Tome 4 (1951-1952) . (no.10-13)
- Book: 978-3-540-38121-1. [{{Google books|title=Complex Analytic Geometry|jR56CwAAQBAJ|plainurl=yes}} Complex Analytic Geometry]. Fischer. G.. 14 November 2006. Springer .
- Book: Chapter III. Variety (Sec. B. Anlytic cover). . Analytic Functions of Several Complex Variables . 9780821821657 . Gunning . Robert Clifford . Rossi . Hugo . 2009 . American Mathematical Soc. .
- Book: Chapter V. Anlytic space. . Analytic Functions of Several Complex Variables . 9780821821657 . Gunning . Robert Clifford . Rossi . Hugo . 2009 . American Mathematical Soc. .
- 10.1007/BF01362011. Komplexe Räume. 1958. Grauert. Hans. Remmert. Reinhold. Mathematische Annalen. 136. 3. 245–318. 121348794.
- Book: 978-3-642-69582-7. [{{Google books|title=Coherent Analytic Sheaves|blPxCAAAQBAJ|plainurl=yes}} Coherent Analytic Sheaves]. Grauert. H.. Remmert. R.. 6 December 2012. Springer .
- Book: 978-3-662-09873-8. Several Complex Variables VII: Sheaf-Theoretical Methods in Complex Analysis. Grauert. H.. Peternell. Thomas. Remmert. R.. 9 March 2013. Springer .
- Book: math/0206203. Grothendieck. Alexander. Alexander Grothendieck. Michèle Raynaud. Raynaud. Michèle. Revêtements étales et groupe fondamental (SGA 1). Revêtements étales et groupe fondamental§XII. Géométrie algébrique et géométrie analytique. 2002. 978-2-85629-141-2. https://link.springer.com/chapter/10.1007%2FBFb0058667. 10.1007/BFb0058656. fr.
- Book: Hartshorne . Robin. 10.1007/BFb0067839. [{{Google books|PC58CwAAQBAJ|plainurl=yes|page=221}} Ample Subvarieties of Algebraic Varieties ]. Lecture Notes in Mathematics . 1970 . 156 . 978-3-540-05184-8.
- Book: Hartshorne . Robin . Robin Hartshorne . [{{Google books|7z4mBQAAQBAJ|Algebraic Geometry|page=438|plainurl=yes}} Algebraic Geometry ]. Graduate Texts in Mathematics . . Berlin, New York . 978-0-387-90244-9 . 0463157 . 0367.14001 . 1977 . 52 . 10.1007/978-1-4757-3849-0. 197660097 .
- Huckleberry . Alan . Hans Grauert (1930–2011) . Jahresbericht der Deutschen Mathematiker-Vereinigung . 2013 . 115 . 21–45 . 10.1365/s13291-013-0061-7. 1303.6933. 119685542 .
- Remmert . Reinhold . From Riemann Surfaces to Complex Spaces . Séminaires et Congrès . 1998. 1044.01520.
- Serre . Jean-Pierre . Jean-Pierre Serre . Géométrie algébrique et géométrie analytique . 0082175 . 1956 . . 0373-0956 . 6 . 1–42 . 10.5802/aif.59. free .
- Book: 978-3-642-10944-7. [{{Google books|title=Singularities of Analytic Spaces: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Bressanone (Bolzano)|MVck0twHKSIC|page=163|plainurl=yes}} Singularities of Analytic Spaces: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Bressanone (Bolzano), Italy, June 16-25, 1974]. Tognoli. A.. A. Tognoli. 2 June 2011. 10.1007/978-3-642-10944-7.
- Book: 10.2969/msjmemoirs/01401C020. Chapter II. Preliminaries . Zariski-decomposition and Abundance . Mathematical Society of Japan Memoirs . 2004 . 14 . 13–78 . Mathematical Society of Japan . 978-4-931469-31-0 .
- 10.5802/afst.1582 . Local polar varieties in the geometric study of singularities . 2018 . Flores . Arturo Giles . Teissier . Bernard . Annales de la Faculté des Sciences de Toulouse: Mathématiques . 27 . 4 . 679–775 . 119150240 . 1607.07979 .
Future reading
- 10.1365/s13291-013-0061-7 . Hans Grauert (1930–2011) . 2013 . Huckleberry . Alan . Jahresbericht der Deutschen Mathematiker-Vereinigung . 115 . 21–45 . 256084531 .
External links
Notes and References
- Complex analytic variety (or just variety) is sometimes required to be irreducible and (or) reduced
- (SGA 1 §XII. Proposition 2.1.)