In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra
ak{g}
Lak{g}
ak{g}
\hat{ak{g}}
ak{g}
L\sigmaak{g}
ak{g}
If
ak{g}
\hat{ak{g}}
ak{g} ⊗ \Complex[t,t-1]
\Complexc.
\widehat{ak{g}}=ak{g} ⊗ \Complex[t,t-1] ⊕ \Complexc,
where
\Complex[t,t-1]
[a ⊗ tn+\alphac,b ⊗ tm+\betac]=[a,b] ⊗ tn+m+\langlea|b\ranglen\deltam+n,0c
for all
a,b\inak{g},\alpha,\beta\in\Complex
n,m\inZ
[a,b]
ak{g}
\langle ⋅ | ⋅ \rangle
ak{g}.
The affine Lie algebra corresponding to a finite-dimensional semisimple Lie algebra is the direct sum of the affine Lie algebras corresponding to its simple summands. There is a distinguished derivation of the affine Lie algebra defined by
\delta(a ⊗ tm+\alphac)=t{d\overdt}(a ⊗ tm).
The corresponding affine Kac–Moody algebra is defined as a semidirect product by adding an extra generator d that satisfies [''d'', ''A''] = δ(A).
The Dynkin diagram of each affine Lie algebra consists of that of the corresponding simple Lie algebra plus an additional node, which corresponds to the addition of an imaginary root. Of course, such a node cannot be attached to the Dynkin diagram in just any location, but for each simple Lie algebra there exists a number of possible attachments equal to the cardinality of the group of outer automorphisms of the Lie algebra. In particular, this group always contains the identity element, and the corresponding affine Lie algebra is called an untwisted affine Lie algebra. When the simple algebra admits automorphisms that are not inner automorphisms, one may obtain other Dynkin diagrams and these correspond to twisted affine Lie algebras.
The attachment of an extra node to the Dynkin diagram of the corresponding simple Lie algebra corresponds to the following construction. An affine Lie algebra can always be constructed as a central extension of the loop algebra of the corresponding simple Lie algebra. If one wishes to begin instead with a semisimple Lie algebra, then one needs to centrally extend by a number of elements equal to the number of simple components of the semisimple algebra. In physics, one often considers instead the direct sum of a semisimple algebra and an abelian algebra
\Complexn
The second integral cohomology of the loop group of the corresponding simple compact Lie group is isomorphic to the integers. Central extensions of the affine Lie group by a single generator are topologically circle bundles over this free loop group, which are classified by a two-class known as the first Chern class of the fibration. Therefore, the central extensions of an affine Lie group are classified by a single parameter k which is called the level in the physics literature, where it first appeared. Unitary highest weight representations of the affine compact groups only exist when k is a natural number. More generally, if one considers a semi-simple algebra, there is a central charge for each simple component.
As in the finite case, determining the Cartan–Weyl basis is an important step in determining the structure of affine Lie algebras.
Fix a finite-dimensional, simple, complex Lie algebra
ak{g}
ak{h}
\Delta
Xn=X ⊗ tn,
\{Hi\}\cup\{E\alpha|\alpha\in\Delta\}
ak{g}
i | |
\{H | |
n\} |
\cup\{c\}\cup
\alpha | |
\{E | |
n\} |
i | |
\{H | |
0\} |
\cup\{c\}
The eigenvalues of
i | |
ad(H | |
0) |
ad(c)
\alpha | |
E | |
n |
\alphai
0
n
\alpha
(\alpha1, … ,\alphadim
\alpha | |
E | |
n. |
The Killing form can almost be completely determined using its invariance property. Using the notation
B
ak{g}
\hatB
\hatB
c,d
(+,-)
Write the affine root associated with
\alpha | |
E | |
n |
\hat\alpha=(\alpha;0;n)
\delta=(0,0,1)
The full set of roots isThen
\delta
(\delta,\delta)=0
( ⋅ , ⋅ )
In order to obtain a basis of simple roots for the affine algebra, an extra simple root must be appended, and is given bywhere
\theta
ak{g}
The representation theory for affine Lie algebras is usually developed using Verma modules. Just as in the case of semi-simple Lie algebras, these are highest weight modules. There are no finite-dimensional representations; this follows from the fact that the null vectors of a finite-dimensional Verma module are necessarily zero; whereas those for the affine Lie algebras are not. Roughly speaking, this follows because the Killing form is Lorentzian in the
c,\delta
(z,\bar{z})
z=\exp(\tau+i\sigma)
\tau
\sigma
The representations are constructed in more detail as follows.[1]
Fix a Lie algebra
ak{g}
\{J\rho\}
\rho | |
\{J | |
n\} |
=\{J\rho ⊗ tn\}
\rho | |
\{J | |
n\}\cup |
\{c\}
\hatak{g}
The vacuum representation of rank
k
Vk(akg)
k\inC
\hatak{g}
V=Vk(ak{g})
The vacuum representation in fact can be equipped with vertex algebra structure, in which case it is called the affine vertex algebra of rank
k
d
T
See main article: Weyl-Kac character formula.
The Weyl group of an affine Lie algebra can be written as a semi-direct product of the Weyl group of the zero-mode algebra (the Lie algebra used to define the loop algebra) and the coroot lattice.
The Weyl character formula of the algebraic characters of the affine Lie algebras generalizes to the Weyl-Kac character formula. A number of interesting constructions follow from these. One may construct generalizations of the Jacobi theta function. These theta functions transform under the modular group. The usual denominator identities of semi-simple Lie algebras generalize as well; because the characters can be written as "deformations" or q-analogs of the highest weights, this led to many new combinatoric identities, include many previously unknown identities for the Dedekind eta function. These generalizations can be viewed as a practical example of the Langlands program.
Due to the Sugawara construction, the universal enveloping algebra of any affine Lie algebra has the Virasoro algebra as a subalgebra. This allows affine Lie algebras to serve as symmetry algebras of conformal field theories such as WZW models or coset models. As a consequence, affine Lie algebras also appear in the worldsheet description of string theory.
The Heisenberg algebra[2] defined by generators
an,n\inZ
\hataku(1)