Wind engineering explained

Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage, inconvenience or benefits which may result from wind. In the field of engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as in a tornado, hurricane or heavy storm, which may cause widespread destruction. In the fields of wind energy and air pollution it also includes low and moderate winds as these are relevant to electricity production and dispersion of contaminants.

Wind engineering draws upon meteorology, fluid dynamics, mechanics, geographic information systems, and a number of specialist engineering disciplines, including aerodynamics and structural dynamics.[1] The tools used include atmospheric models, atmospheric boundary layer wind tunnels, and computational fluid dynamics models.

Wind engineering involves, among other topics:

Wind engineering may be considered by structural engineers to be closely related to earthquake engineering and explosion protection.

Some sports stadiums such as Candlestick Park and Arthur Ashe Stadium are known for their strong, sometimes swirly winds, which affect the playing conditions.

History

Wind engineering as a separate discipline can be traced to the UK in the 1960s, when informal meetings were held at the National Physical Laboratory, the Building Research Establishment, and elsewhere. The term "wind engineering" was first coined in 1970.[2] Alan Garnett Davenport was one of the most prominent contributors to the development of wind engineering.[3] He is well known for developing the Alan Davenport wind-loading chain or in short "wind-loading chain" that describes how different components contribute to the final load calculated on the structure.[4]

Wind loads on buildings

The design of buildings must account for wind loads, and these are affected by wind shear.For engineering purposes, a power law wind-speed profile may be defined as:[5] [6]

vz=vg\left(

z
zg
1
\alpha
\right)

,0<z<zg

where:

vz

= speed of the wind at height

z

vg

= gradient wind at gradient height

zg

\alpha

= exponential coefficient
Typically, buildings are designed to resist a strong wind with a very long return period, such as 50 years or more. The design wind speed is determined from historical records using extreme value theory to predict future extreme wind speeds. Wind speeds are generally calculated based on some regional design standard or standards. The design standards for building wind loads include:

Wind comfort

The advent of high-rise tower blocks led to concerns regarding the wind nuisance caused by these buildings to pedestrians in their vicinity.

A number of wind comfort and wind danger criteria were developed from 1971, based on different pedestrian activities, such as:[7]

Other criteria classified a wind environment as completely unacceptable or dangerous.

Building geometries consisting of one and two rectangular buildings have a number of well-known effects:[8] [9]

For more complex geometries, pedestrian wind comfort studies are required. These can use an appropriately scaled model in a boundary-layer wind tunnel, or more recently, use of computational fluid dynamics techniques has increased.[10] The pedestrian level wind speeds for a given exceedance probability are calculated to allow for regional wind speeds statistics.[11]

The vertical wind profile used in these studies varies according to the terrain in the vicinity of the buildings (which may differ by wind direction), and is often grouped in categories, such as:[12]

Wind turbines

Wind turbines are affected by wind shear. Vertical wind-speed profiles result in different wind speeds at the blades nearest to the ground level compared to those at the top of blade travel, and this, in turn, affects the turbine operation.[13] The wind gradient can create a large bending moment in the shaft of a two bladed turbine when the blades are vertical.[14] The reduced wind gradient over water means shorter and less expensive wind turbine towers can be used in shallow seas.[15]

For wind turbine engineering, wind speed variation with height is often approximated using a power law:[13]

vw(h)=vref\left(

h
href

\right)a

where:

vw(h)

= velocity of the wind at height

h

[m/s]

vref

= velocity of the wind at some reference height

href

[m/s]

a

= Hellman exponent (aka power law exponent or shear exponent) (~= 1/7 in neutral flow, but can be >1)

Significance

The knowledge of wind engineering is used to analyze and design all high-rise buildings, cable-suspension bridges and cable-stayed bridges, electricity transmission towers and telecommunication towers and all other types of towers and chimneys. The wind load is the dominant load in the analysis of many tall buildings, so wind engineering is essential for their analysis and design. Again, wind load is a dominant load in the analysis and design of all long-span cable bridges.

See also

Further reading

External links

Notes and References

  1. Hewitt. Sam. Margetts. Lee. Revell. Alistair. 2017-04-18. Building a Digital Wind Farm. Archives of Computational Methods in Engineering. 25. 4. en. 879–899. 10.1007/s11831-017-9222-7. 1134-3060. 6209038. 30443152.
  2. Cochran. Leighton. Derickson. Russ. April 2011. A physical modeler's view of Computational Wind Engineering. Journal of Wind Engineering and Industrial Aerodynamics. en. 99. 4. 139–153. 10.1016/j.jweia.2011.01.015. 2011JWEIA..99..139C .
  3. Book: Solari, Giovanni. Wind Science and Engineering: Origins, Developments, Fundamentals and Advancements. 2019. Springer International Publishing. 978-3-030-18814-6. Springer Tracts in Civil Engineering. Cham. en. 10.1007/978-3-030-18815-3.
  4. Isyumov. Nicholas. May 2012. Alan G. Davenport's mark on wind engineering. Journal of Wind Engineering and Industrial Aerodynamics. en. 104-106. 12–24. 10.1016/j.jweia.2012.02.007. 2012JWEIA.104...12I .
  5. Book: Crawley, Stanley . Steel Buildings . Wiley . New York . 1993 . 978-0-471-84298-9 . 272 .
  6. Book: Gupta, Ajaya Kumar and Peter James Moss. Guidelines for Design of Low-Rise Buildings Subjected to Lateral Forces . CRC Press . Boca Raton . 1993 . 978-0-8493-8969-6 . 49.
  7. http://sts.bwk.tue.nl/urbanphysics/pdf/2013_BAE_WD_BB_TvH_Preprint.pdf Pedestrian wind comfort around buildings: comparison of wind comfort criteria. Table 3
  8. http://sts.bwk.tue.nl/urbanphysics/pdf/2013_BAE_WD_BB_TvH_Preprint.pdf Pedestrian wind comfort around buildings: comparison of wind comfort criteria. Figure 6
  9. http://www.hkisc.org/proceedings/2006421/6_Johnny_Yu%20Wind%20Effect%20on%20Pedestrians.pdf Wind Effects On Pedestrians. Figure 3
  10. http://www.aij.or.jp/jpn/publish/cfdguide/JWEIAguide.pdf AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
  11. https://www.cmff.hu/oktatas/tantargy/NEPTUN/BMEGEATMW08/2010-2011-1/ea_lecture/blocken_pedestrianWindEnvironment.pdf Pedestrian Wind Environment Around Buildings. p112
  12. https://law.resource.org/pub/nz/ibr/as-nzs.1170.2.2011.pdf AS/NZS 1170.2:2011 Structural Design Actions Part 2 – Wind actions. Section 4.2
  13. Book: Heier, Siegfried . Grid Integration of Wind Energy Conversion Systems . John Wiley & Sons . Chichester . 2005 . 978-0-470-86899-7 . 45.
  14. Book: Harrison, Robert . Large Wind Turbines . John Wiley & Sons . Chichester . 2001 . 978-0-471-49456-0 . 30.
  15. Book: Lubosny, Zbigniew . Wind Turbine Operation in Electric Power Systems: Advanced Modeling . Springer . Berlin . 2003 . 978-3-540-40340-1 . 17.