The Wigner–Eckart theorem is a theorem of representation theory and quantum mechanics. It states that matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is independent of angular momentum orientation, and the other a Clebsch–Gordan coefficient. The name derives from physicists Eugene Wigner and Carl Eckart, who developed the formalism as a link between the symmetry transformation groups of space (applied to the Schrödinger equations) and the laws of conservation of energy, momentum, and angular momentum.[1]
Mathematically, the Wigner–Eckart theorem is generally stated in the following way. Given a tensor operator
T(k)
j
j'
\langlej\|T(k)\|j'\rangle
m
m'
q
\langlejm|
(k) | |
T | |
q |
|j'm'\rangle =\langlej'm'kq|jm\rangle\langlej\|T(k)\|j'\rangle,
where
(k) | |
T | |
q |
T(k)
|jm\rangle
\langlej'm'kq|jm\rangle
\langlej\|T(k)\|j'\rangle
The Wigner–Eckart theorem states indeed that operating with a spherical tensor operator of rank on an angular momentum eigenstate is like adding a state with angular momentum k to the state. The matrix element one finds for the spherical tensor operator is proportional to a Clebsch–Gordan coefficient, which arises when considering adding two angular momenta. When stated another way, one can say that the Wigner–Eckart theorem is a theorem that tells how vector operators behave in a subspace. Within a given subspace, a component of a vector operator will behave in a way proportional to the same component of the angular momentum operator. This definition is given in the book Quantum Mechanics by Cohen–Tannoudji, Diu and Laloe.
Let's say we want to calculate transition dipole moments for an electron transition from a 4d to a 2p orbital of a hydrogen atom, i.e. the matrix elements of the form
\langle2p,m1|ri|4d,m2\rangle
The Wigner–Eckart theorem allows one to obtain the same information after evaluating just one of those 45 integrals (any of them can be used, as long as it is nonzero). Then the other 44 integrals can be inferred from that first one—without the need to write down any wavefunctions or evaluate any integrals—with the help of Clebsch–Gordan coefficients, which can be easily looked up in a table or computed by hand or computer.
The Wigner–Eckart theorem works because all 45 of these different calculations are related to each other by rotations. If an electron is in one of the 2p orbitals, rotating the system will generally move it into a different 2p orbital (usually it will wind up in a quantum superposition of all three basis states, m = +1, 0, −1). Similarly, if an electron is in one of the 4d orbitals, rotating the system will move it into a different 4d orbital. Finally, an analogous statement is true for the position operator: when the system is rotated, the three different components of the position operator are effectively interchanged or mixed.
If we start by knowing just one of the 45 values (say, we know that
\langle2p,m1|ri|4d,m2\rangle=K
\langle2p,m1|
ri
|4d,m2\rangle
(In practice, when working through this math, we usually apply angular momentum operators to the states, rather than rotating the states. But this is fundamentally the same thing, because of the close mathematical relation between rotations and angular momentum operators.)
To state these observations more precisely and to prove them, it helps to invoke the mathematics of representation theory. For example, the set of all possible 4d orbitals (i.e., the 5 states m = −2, −1, 0, 1, 2 and their quantum superpositions) form a 5-dimensional abstract vector space. Rotating the system transforms these states into each other, so this is an example of a "group representation", in this case, the 5-dimensional irreducible representation ("irrep") of the rotation group SU(2) or SO(3), also called the "spin-2 representation". Similarly, the 2p quantum states form a 3-dimensional irrep (called "spin-1"), and the components of the position operator also form the 3-dimensional "spin-1" irrep.
Now consider the matrix elements
\langle2p,m1|ri|4d,m2\rangle
Apart from the overall scale factor, calculating the matrix element
\langle2p,m1|ri|4d,m2\rangle
Starting with the definition of a spherical tensor operator, we have
[J\pm,
(k) | |
T | |
q] |
=\hbar\sqrt{(k\mpq)(k\pmq+
(k) | |
1)}T | |
q\pm1 |
,
which we use to then calculate
\begin{align} &\langlejm|[J\pm,
(k) | |
T | |
q] |
|j'm'\rangle=\hbar\sqrt{(k\mpq)(k\pmq+1)}\langlejm|
(k) | |
T | |
q\pm1 |
|j'm'\rangle. \end{align}
If we expand the commutator on the LHS by calculating the action of the on the bra and ket, then we get
\begin{align}\langlejm|[J\pm,
(k) | |
T | |
q] |
|j'm'\rangle={}&\hbar\sqrt{(j\pmm)(j\mpm+1)}\langlej(m\mp1)|
(k) | |
T | |
q |
|j'm'\rangle\\ &-\hbar\sqrt{(j'\mpm')(j'\pmm'+1)}\langlejm|
(k) | |
T | |
q |
|j'(m'\pm1)\rangle. \end{align}
We may combine these two results to get
\begin{align}\sqrt{(j\pmm)(j\mpm+1)}\langlej(m\mp1)|
(k) | |
T | |
q |
|j'm'\rangle=&\sqrt{(j'\mpm')(j'\pmm'+1)}\langlejm|
(k) | |
T | |
q |
|j'(m'\pm1)\rangle\\ &+\sqrt{(k\mpq)(k\pmq+1)}\langlejm|
(k) | |
T | |
q\pm1 |
|j'm'\rangle. \end{align}
This recursion relation for the matrix elements closely resembles that of the Clebsch–Gordan coefficient. In fact, both are of the form . We therefore have two sets of linear homogeneous equations:
\begin{align} \sumcab,xc&=0,& \sumcab,yc&=0. \end{align}
one for the Clebsch–Gordan coefficients and one for the matrix elements . It is not possible to exactly solve for . We can only say that the ratios are equal, that is
xc | |
xd |
=
yc | |
yd |
or that, where the coefficient of proportionality is independent of the indices. Hence, by comparing recursion relations, we can identify the Clebsch–Gordan coefficient with the matrix element, then we may write
\langlej'm'|
(k) | |
T | |
q\pm1 |
|jm\rangle \propto\langlejmk(q\pm1)|j'm'\rangle.
There are different conventions for the reduced matrix elements. One convention, used by Racah[5] and Wigner,[6] includes an additional phase and normalization factor,
\langlejm|
(k) | |
T | |
q |
|j'm'\rangle =
(-1)2\langlej'm'kq|jm\rangle\langlej\|T(k)\|j'\rangleR | |
\sqrt{2j+1 |
\langlej\|T\dagger\|j'\rangleR=(-1)k\langlej'\|T(k)\|
*, | |
j\rangle | |
R |
where the Hermitian adjoint is defined with the convention. Although this relation is not affected by the presence or absence of the phase factor in the definition of the reduced matrix element, it is affected by the phase convention for the Hermitian adjoint.
Another convention for reduced matrix elements is that of Sakurai's Modern Quantum Mechanics:
\langlejm|
(k) | |
T | |
q |
|j'm'\rangle =
\langlej'm'kq|jm\rangle\langlej\|T(k)\|j'\rangle | |
\sqrt{2j'+1 |
Consider the position expectation value . This matrix element is the expectation value of a Cartesian operator in a spherically symmetric hydrogen-atom-eigenstate basis, which is a nontrivial problem. However, the Wigner–Eckart theorem simplifies the problem. (In fact, we could obtain the solution quickly using parity, although a slightly longer route will be taken.)
We know that is one component of, which is a vector. Since vectors are rank-1 spherical tensor operators, it follows that must be some linear combination of a rank-1 spherical tensor with . In fact, it can be shown that
x=
| ||||||||||||||||
\sqrt{2 |
where we define the spherical tensors as[7]
(1) | |
T | |
q |
=\sqrt{
4\pi | |
3 |
and are spherical harmonics, which themselves are also spherical tensors of rank . Additionally,, and
(1) | |
T | |
\pm1 |
=\mp
x\pmiy | |
\sqrt{2 |
Therefore,
\begin{align} \langlenjm|x|n'j'm' \rangle &=\left\langlenjm\left|
| ||||||||||||||||
\sqrt{2 |
The above expression gives us the matrix element for in the basis. To find the expectation value, we set,, and . The selection rule for and is for the spherical tensors. As we have, this makes the Clebsch–Gordan Coefficients zero, leading to the expectation value to be equal to zero.