Weyl's lemma (Laplace equation) explained
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.
Statement of the lemma
Let
be an
open subset of
-dimensional Euclidean space
, and let
denote the usual
Laplace operator. Weyl's lemma
[1] states that if a
locally integrable function
is a weak solution of Laplace's equation, in the sense that
\int\Omegau(x)\Delta\varphi(x)dx=0
for every test function (smooth function with compact support)
, then (up to redefinition on a set of
measure zero)
is smooth and satisfies
pointwise in
.
This result implies the interior regularity of harmonic functions in
, but it does not say anything about their regularity on the boundary
.
Idea of the proof
To prove Weyl's lemma, one convolves the function
with an appropriate
mollifier
and shows that the mollification
u\varepsilon=\varphi\varepsilon\astu
satisfies Laplace's equation, which implies that
has the mean value property. Taking the limit as
and using the properties of mollifiers, one finds that
also has the mean value property,
[2] which implies that it is a smooth solution of Laplace's equation.
[3] [4] Alternative proofs use the smoothness of the fundamental solution of the Laplacian or suitable a priori elliptic estimates.
Generalization to distributions
More generally, the same result holds for every distributional solution of Laplace's equation: If
satisfies
\langleT,\Delta\varphi\rangle=0
for every
, then
is a regular distribution associated with a smooth solution
of Laplace's equation.
[5] Connection with hypoellipticity
Weyl's lemma follows from more general results concerning the regularity properties of elliptic or hypoelliptic operators.[6] A linear partial differential operator
with smooth coefficients is hypoelliptic if the
singular support of
is equal to the singular support of
for every distribution
. The Laplace operator is hypoelliptic, so if
, then the singular support of
is empty since the singular support of
is empty, meaning that
. In fact, since the Laplacian is elliptic, a stronger result is true, and solutions of
are
real-analytic.
References
- Book: Gilbarg, David . Elliptic Partial Differential Equations of Second Order . Neil S. Trudinger . Neil Trudinger . 1988. Springer . 3-540-41160-7.
- Book: Stein, Elias . Elias Stein
. Elias Stein. 2005 . Real Analysis: Measure Theory, Integration, and Hilbert Spaces . Princeton University Press . 0-691-11386-6.
Notes and References
- [Hermann Weyl]
- The mean value property is known to characterize harmonic functions in the following sense. Let
. Then
is harmonic in the usual sense (so
and
if and only if for all balls
Br\left(x0\right)\Subset\Omega
we have\int | |
| \partialBr\left(x0\right) |
h(x)dSx.
where
is the (n - 1)-dimensional area of the hypersphere \partialBr\left(x0\right)
.Using polar coordinates about
we see that when
is harmonic, then for Br\left(x0\right)\Subset\Omega
,h\left(x0\right)=\left(\rhor*h\right)\left(x0\right).
- Bernard Dacorogna, Introduction to the Calculus of Variations, 2nd ed., Imperial College Press (2009), p. 148.
- Web site: Weyl’s lemma, one of many . Stroock . Daniel W..
- [Lars Gårding]
- [Lars Hörmander]