Weyl–Lewis–Papapetrou coordinates explained

In general relativity, the Weyl–Lewis–Papapetrou coordinates are used in solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1] [2] [3]

Details

The square of the line element is of the form:[4]

ds2=-e2\nudt2+\rho2B2e-2\nu(d\phi-\omegadt)2+e2(λ(d\rho2+dz2)

where

(t,\rho,\phi,z)

are the cylindrical Weyl–Lewis–Papapetrou coordinates in

3+1

-dimensional spacetime, and

λ

,

\nu

,

\omega

, and

B

, are unknown functions of the spatial non-angular coordinates

\rho

and

z

only. Different authors define the functions of the coordinates differently.

See also

Further reading

Selected papers

Selected books

Notes and References

  1. Weyl . Hermann . 1917 . Zur Gravitationstheorie . . de . 359 . 18 . 117–145 . 1917AnP...359..117W . 10.1002/andp.19173591804 . 0003-3804.
  2. Lewis . T. . 1932 . Some special solutions of the equations of axially symmetric gravitational fields . Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character . en . 136 . 829 . 176–192 . 1932RSPSA.136..176L . 10.1098/rspa.1932.0073 . 0950-1207 . free.
  3. A. . Papapetrou . A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution . Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 52 . 191–204 . 1948 . 20488481 .
  4. Book: Bičák . Jiří . Gravitation, following the Prague inspiration: a volume in celebration of the 60th birthday of Jiří Bičák . Semerák . O. . Podolský . Jiří . Žofka . Martin . 2002 . . 978-981-238-093-7 . Bičák . Jiří . River Edge, N.J . 122 . ocm51260088 . Semerák . O. . Podolský . J. . Žofka . M..