Western Interior Seaway Explained

The Western Interior Seaway (also called the Cretaceous Seaway, the Niobraran Sea, the North American Inland Sea, or the Western Interior Sea) was a large inland sea that split the continent of North America into two landmasses for 34 million years. The ancient sea, which existed from the early Late Cretaceous (100 Ma) to the earliest Paleocene (66 Ma), connected the Gulf of Mexico to the Arctic Ocean. The two land masses it created were Laramidia to the west and Appalachia to the east. At its largest extent, it was 2500feet deep, 600miles wide and over 2000miles long.

Origin and geology

By the late Cretaceous, Eurasia and the Americas had separated along the south Atlantic, and subduction on the west coast of the Americas had commenced, resulting in the Laramide orogeny, the early phase of growth of the modern Rocky Mountains. The Western Interior Seaway may be seen as a downwarping of the continental crust ahead of the growing Laramide/Rockies mountain chain.

The earliest phase of the seaway began in the mid-Cretaceous when an arm of the Arctic Ocean transgressed south over western North America; this formed the Mowry Sea, so named for the Mowry Shale, an organic-rich rock formation. In the south, the Gulf of Mexico was originally an extension of the Tethys Ocean. In time, the southern embayment merged with the Mowry Sea in the late Cretaceous, forming a completed seaway, creating isolated environments for land animals and plants.

Relative sea levels fell multiple times, as a margin of land temporarily rose above the water along the ancestral Transcontinental Arch,[1] each time rejoining the separated, divergent land populations, allowing a temporary mixing of newer species before again separating the populations.

At its largest, the Western Interior Seaway stretched from the Rockies east to the Appalachian Mountains, some 1000km (1,000miles) wide. At its deepest, it may have been only 800or deep, shallow in terms of seas. Two great continental watersheds drained into it from east and west, diluting its waters and bringing resources in eroded silt that formed shifting delta systems along its low-lying coasts. There was little sedimentation on the eastern shores of the seaway; the western boundary, however, consisted of a thick clastic wedge eroded eastward from the Sevier orogenic belt.[2] The western shore was thus highly variable, depending on variations in sea level and sediment supply.

Widespread carbonate deposition suggests that the seaway was warm and tropical, with abundant calcareous planktonic algae.[3] Remnants of these deposits are found in northwest Kansas. A prominent example is Monument Rocks, an exposed chalk formation towering over the surrounding range land.[4] The Western Interior Seaway is believed to have behaved similarly to a giant estuary in terms of water mass transport. Riverine inputs exited the seaway as coastal jets, while correspondingly drawing in water from the Tethys in the south and Boreal waters from the north.[5] During the late Cretaceous, the Western Interior Seaway went through multiple periods of anoxia, when the bottom water was devoid of oxygen and the water column was stratified.[6]

At the end of the Cretaceous, continued Laramide uplift hoisted the sandbanks (sandstone) and muddy brackish lagoons (shale), thick sequences of silt and sandstone still seen today as the Laramie Formation, while low-lying basins between them gradually subsided. The Western Interior Seaway divided across the Dakotas and retreated south towards the Gulf of Mexico. This shrunken and final regressive phase is sometimes called the Pierre Seaway.[7]

During the early Paleocene, parts of the Western Interior Seaway still occupied areas of the Mississippi Embayment, submerging the site of present-day Memphis. Later transgression, however, was associated with the Cenozoic Tejas sequence, rather than with the previous event responsible for the seaway.[8] [9] [10]

Fauna

The Western Interior Seaway was a shallow sea, filled with abundant marine life. Interior seaway denizens included predatory marine reptiles such as plesiosaurs, and mosasaurs. Other marine life included sharks such as Squalicorax, Cretoxyrhina, and the giant shellfish-eating Ptychodus mortoni (believed to be  long);[11] and advanced bony fish including Pachyrhizodus,[12] Enchodus, and the massive 4mto5mm (13feetto16feetm) long Xiphactinus, larger than any modern bony fish.[13] Other sea life included invertebrates such as mollusks, ammonites, squid-like belemnites, and plankton including coccolithophores that secreted the chalky platelets that give the Cretaceous its name, foraminiferans and radiolarians.[14] [15]

The seaway was home to early birds, including the flightless Hesperornis that had stout legs for swimming through water and tiny wings used for marine steering rather than flight; and the tern-like Ichthyornis, an early avian with a toothy beak. Ichthyornis shared the sky with large pterosaurs such as Nyctosaurus and Pteranodon. Pteranodon fossils are very common; it was probably a major participant in the surface ecosystem, though it was found in only the southern reaches of the seaway.[16]

Inoceramids (oyster-like bivalve molluscs) were well-adapted to life in the oxygen-poor bottom mud of the seaway.[17] These left abundant fossils in the Kiowa, Greenhorn, Niobrara, Mancos, and Pierre formations. There is great variety in the shells and the many distinct species have been dated and can be used to identify specific beds in those rock formations of the seaway. Many species can easily fit in the palm of the hand, while some like Inoceramus (Haploscapha) grandis[18] could be well over a meter in diameter. Entire schools of fish sometimes sought shelter within the shell of the giant Platyceramus.[19] The shells of the genus are known for being composed of prismatic calcitic crystals that grew perpendicular to the surface, and fossils often retain a pearly luster.[20]

Further reading

External links

Notes and References

  1. R.J. Weimer . 1984 . AAPG Memoir . Relation of unconformities, tectonics, and sea-level changes, Cretaceous of Western Interior, U.S.A.; in . J.S. Schlee . . Memoir 36, Interregional unconformities and hydrocarbon accumulation . 7-35 . [The url is to a Rice University-hosted pdf of a book chapter adapted from the original Weimer 1984 paper.] . March 6, 2021 .
  2. Book: Monroe, James S. . The Changing Earth: Exploring Geology and Evolution . limited . 2009 . Brooks/Cole, Cengage Learning . Belmont, CA . 978-0495554806 . 605 . 5th . Wicander, Reed .
  3. Web site: Oceans of Kansas Paleontology . Mike Everhart . 2007-02-06.
  4. Web site: Monument Rocks, the Chalk Pyramids - Kansas. Keith. Stokes. www.kansastravel.org. 7 April 2018.
  5. Slingerland . Rudy . Kump . Lee R. . Arthur . Michael A. . Fawcett . Peter J. . Sageman . Bradley B. . Barron . Eric J. . 1 August 1996 . Estuarine circulation in the Turonian Western Interior seaway of North America . . 108 . 8 . 941–952 . 10.1130/0016-7606(1996)108<0941:ECITTW>2.3.CO;2 . 5 April 2023.
  6. Lowery . Christopher M. . Leckie . R. Mark . Bryant . Raquel . Elderbak . Khalifa . Parker . Amanda . Polyak . Desiree E. . Schmidt . Maxine . Snoeyenbos-West . Oona . Sterzinare . Ericfa . The Late Cretaceous Western Interior Seaway as a model for oxygenation change in epicontinental restricted basins . . 1 February 2018 . 177 . 545–564 . 10.1016/j.earscirev.2017.12.001. 2018ESRv..177..545L .
  7. Book: Stanley, Steven M. . Earth System History . New York . W.H. Freeman and Company . 1999 . 0-7167-2882-6 . 487–489.
  8. Book: Stanley . Steven M. . Earth system history . 1998 . W.H. Freeman . New York . 0716728826 . 516.
  9. Book: Monroe . James S. . 1997 . The changing earth: exploring geology and evolution . Belmont, Calif. . Wadsworth Pub . 0314095772 . 643 . 2nd.
  10. Book: Frazier . William J. . Schwimmer . David R. . Regional Stratigraphy of North America . The Tejas Sequence: Tertiary—Recent . 1987 . 523–652 . 10.1007/978-1-4613-1795-1_9. 978-1-4612-9005-6 .
  11. News: Walker . Matt . Giant predatory shark fossil unearthed in Kansas . BBC Earth News . 24 February 2010 . 16 April 2013.
  12. Web site: Pachyrhizodus. A Large Predatory Fish from the Late Cretaceous Western Interior Sea . Mike Everhart . February 2, 2010 . Oceans of Kansas Paleontology . May 5, 2011.
  13. Cumbaa . Stephen L. . Tokaryk . Tim T. . Recent Discoveries of Cretaceous Marine Vertebrates on the Eastern Margins of the Western Interior Seaway . Saskatchewan Geological Survey Summary of Investigations . 1999 . 1 . 57–63 . 27 August 2021.
  14. Boyles . M.J. . Scott . A.J. . 1982 . Comparison of Wave-Dominated Deltaic Deposits and Associated Sand-Rich Strand Plains, Mesaverde Group, Northwest Colorado . AAPG Bulletin . 66 . 5 . 551–552.
  15. Book: Kauffman . E.G. . 1984 . Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America . Jurassic-Cretaceous biochronology and paleogeography of North America . 27 . 273–306 . Geological Association of Canada . 27 August 2021.
  16. Benton, S.C. (1994). "The Pterosaurs of the Niobrara Chalk." The Earth Scientist, 11(1): 22-25.
  17. Da Gama . Rui O.B.P. . Lutz . Brendan . Desjardins . Patricio . Thompson . Michelle . Prince . Iain . Espejo . Irene . Integrated paleoenvironmental analysis of the Niobrara Formation: Cretaceous Western Interior Seaway, northern Colorado . Palaeogeography, Palaeoclimatology, Palaeoecology . November 2014 . 413 . 66–80 . 10.1016/j.palaeo.2014.05.005. 2014PPP...413...66D .
  18. Moss . Rycroft G. . May 2004 . 1 December 1932 . Bulletin 19: The Geology of Ness and Hodgeman Counties, Kansas . Bulletin of the University of Kansas—Lawrence . 33 . 18 . Stratigraphy: Rocks Exposed . 2020-11-17.
  19. Book: Prothero . Donald R. . Bringing fossils to life : an introduction to paleobiology . 2013 . Columbia University Press . New York . 9780231158930 . Third . 172.
  20. Book: Ludvigsen . Rolf . Beard . Graham . 1997 . West Coast Fossils: A Guide to the Ancient Life of Vancouver Island . registration . 102–103. Harbour Pub. . 9781550171792 .